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Juliano Ferrari Gianlupi

BREAKING BARRIERS IN MULTISCALE AGENT-BASED MODELS: EFFECTS OF

CELL INDIVIDUALITY ON VIRAL INFECTION TREATMENT AND A PATH FOR

CROSS-PLATFORM VALIDATION

This Ph.D. research focuses on two primary areas: investigating human health questions

using mechanistic Agent-based models (ABMs) of cells and tissues, and enhancing the field

of mechanistic bio-ABM by improving model verification and sharing. ABMs offer a bottom-

up approach to studying complex biological systems by capturing individual-level behaviors

and interactions. The thesis specifically concentrates on agent-based models of cell tissues,

with a particular emphasis on COVID-19 and anti-viral treatment. The research explores

the integration of traditional pharmacokinetics-pharmacodynamics (PKPD) or physiologically

based pharmacokinetics (PBPK) models with ABMs to gain insights COVID-19 treatment

with remdesivir. It investigates factors contributing to the low adoption of remdesivir as a

COVID-19 treatment, such as the harsh treatment schedule and potency miss-estimation, with

a focus on cell response heterogeneity as a potential cause for miss-estimation. Additionally,

the research highlights the importance of model cross-platform portability. Running the same

model in different platforms can validate models, and ensure model robustness. However, port-

ing a model is difficult and time consuming, emphasizing the need for a universal modeling

description standard for ABMs akin to the Systems Biology Markup Language (SBML). To

investigate some of the challenges of developing such a standard, this research creates a model

specification translation to translate a PhysiCell model into a CompuCell3D model.
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5.2 How PhenoCellPy is organized.Gray boxes are PhenoCellPy classes, the
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A.2 Dead cell populations for 400 replicas of Sego et al.’s model [1]. In all
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CHAPTER 1

INTRODUCTION AND BACKGROUND

My Ph.D. research has two areas of focus. The first is investigating questions related to

human health using mechanistic Agent-based models (ABMs) of cells and tissues. The

second is strengthening the field of mechanistic bio-ABM by investigating how to make

models easier to be verified and shared.

Agent-based models are powerful tools for investigating complex biological systems [1–

9], offering a bottom-up approach that captures individual-level behaviors and interactions.

This thesis aims to contribute to the advancement of mechanistic modeling in human health

by focusing on agent-based models of cell tissues, with a particular emphasis on COVID-

19 and anti-viral treatment for it. In Chapters 2 and 3 I present my work on COVID-19

models (published in [1] and [2]).

My research explores the dynamics of COVID-19 within a patch of the lung. It inves-

tigates how can more traditional pharmacokinetics-pharmacodynamics (PKPD) or physi-

ologically based pharmacokinetics (PBPK) models can be integrated with ABMs. A key

objective is to examine the insights that can be gained from the combination of traditional

pharmacometrics models and ABMs, particularly in relation to the low adoption of remde-

sivir as a COVID-19 treatment. The research investigates potential factors for the low

adoption: such as the harsh treatment schedule and drug potency miss-estimation. It iden-

tifies response heterogeneity of cells as a possible cause for the potency miss-estimation.

Probing response heterogeneity by cells can’t be done with more traditional PBPK.

In science, our experiments (models, simulations, in the case of computational science)

should be replicatable and reproducible using a different method, which provides a means

of comparing results and ensuring model robustness. Tissue agent-based models lack these

qualities, causing a crisis of reproducibility. Reproduction can be done if the model is
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re-implemented by hand in a different platform. However, the process of cross-platform

validation is time-consuming and challenging, requiring the translation and adaptation of

model specifications from one framework to another. Besides being an imperfect applica-

tion of the scientific method, the lack of these qualities hinders collaboration and causes a

reproducibility crisis.

My work encompasses the creation of a method to bridge the replication gap between

two modeling platforms: CompuCell3D [10] and PhysiCell [11]. I created a translator

to go from the model specification of one platform to the specification of another, see

Chapters 4 (unpublished). In the future, the field of tissue ABMs can be made stronger

by the creation of a universal modeling description standard akin to the Systems Biology

Markup Language (SBML) [12] for ABMs. My translator is a step in the direction of the

universal model spec, as it investigates possible pitfalls and find solutions to som eof them.

Another issue with replication is the miss-match of concepts. If platform A has a model

of, e.g., cell shape and platform B does not, we need to either make the cell shape model

available to platform B, or decide what to do about the missing concept. In Chapter 5

(published in [13]) I present my work on making PhysiCell’s cell phenotype sub-models

available to any Python-based modeling platform by re-imagining, and re-implementing,

them in pure Python.

Besides the work presented in this thesis, I have established methods to compare pop-

ulation dynamics, ordinary differential equation (ODE), models with ABMs, and how to

transform an ODE model into an ABM [3]. I have ongoing work investigating interferon

pathways in cellular innate immune response, and ongoing work into the replication of

leishmania in the infection site and immune recruitment to the infection site. I have also

published several online educational tools to demonstrate CompuCell3D’s capabilities.
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1.1 Modeling SARS-CoV-2 Infection and Treatment

The COVID-19 pandemic has underscored the need for comprehensive modeling approaches

to better understand the disease dynamics, transmission patterns, and the effectiveness of

interventions. Agent-based models, capable of capturing the spatial and temporal aspects of

cell behavior, offer a unique opportunity to simulate the complex interactions between im-

mune cells, viral particles, and therapeutic agents within tissues. By incorporating detailed

biological mechanisms and experimental data, these models have the potential to provide

valuable insights into the underlying processes of COVID-19 and aid in the development

of targeted treatment strategies.

In this thesis I explain our first SARS-COV-2 model [1] (see Chapter 2). We aimed to

replicate the reported infection time-line and multiple infection outcomes. We investigated

the interplay of viral infectivity and immune response intensity to question if those two

parameters are enough to replicate the wide-array of outcomes. We only had palliative

treatments available at the time, some people recovered or died quickly, while some were

sick for weeks. We also did a preliminary implementation of antiviral treatment, that I

expanded in [2] (see Chapter 3).

In my COVID-19 remdesivir treatment work [2] (see Chapter 3), I investigate how to

integrate a physiologically based pharmacokinetics (PBPK) and pharmacodynamics (PD)

model with an ABM, and what other questions can this pairing ask. I investigated what are

the effects of cell individuality on the overall treatment, this is a pertinent question because

remdesivir is a prodrug that has to be metabolized intracellularlly into its active form [14].

The COVID-19 pandemic has highlighted the urgent need for efficient model devel-

opment and collaborative efforts among research groups to gain valuable insights into

the complex dynamics of the disease. Furthermore, the ability to compare and validate

models is crucial for ensuring their reliability and applicability. A promising approach to

model validation involves implementing the same underlying biological processes in dif-
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ferent computational frameworks. However, the process of re-implementing a model in

a new platform is often challenging and time-consuming, posing a significant barrier to

cross-platform validation. My thesis begins to address this difficulty.

1.2 Cross-Platform Validation

Agent-based modeling is a powerful tool for studying complex biological systems, offering

a unique perspective on the dynamics and interactions of individual entities within a pop-

ulation. This approach has shown great promise for the investigation of the mechanics of

tissue behaviors, from cancer [5, 6] to embryonic development [7–9] and pathogen infec-

tions [1–4]. They enable the investigation of intricate cellular behaviors and their impact

on disease progression, treatment strategies, and therapeutic interventions.

One crucial aspect of advancing agent-based modeling in human health is the cross-

platform validation of models. Model validation plays a pivotal role in ensuring the reli-

ability and predictive accuracy of simulations. However, due to the diversity of modeling

frameworks and methodologies, validating agent-based models across different platforms

presents significant challenges. This thesis addresses this issue by proposing a prototype

method for cross-platform validation of agent-based models of cell tissues, bridging the

gap between various modeling paradigms.

Cellular Potts models (CPMs) and center-based models (CBMs) are two commonly

employed approaches in agent-based modeling of cell tissues, each with its strengths and

limitations. There are two possible strategies for bridging the gap: creating a general

model description, or by translating model specification from one platform to another. In

this thesis I explored the translation of PhysiCell into CompuCell3D, exploring the neces-

sary adaptations and overcoming the conceptual and computational differences between the

methodologies. By enabling the conversion of models from one methodology to another,

this research aims to enhance the accessibility and applicability of agent-based models for

studying human health, see Chapter 4. I have also implemented PhysiCell’s phenotype
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submodel [11] into an independent Python package that can be used by any Python-based

modeling platform (see Chapter 5).
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CHAPTER 2

AN OVERVIEW OF THE SEGO-APONTE-GIANLUPI COVID-19 MODEL

In this chapter I will present the work we did with the Sego-Aponte-Gianlupi model [1].

This was a joint project with several people in my lab, I then iterated on this model to

create my remdesivir model [2] (see Chapter 3). My colleague Joshua Aponte presented

most of this work in his dissertation, therefore I will present the most relevant parts of the

Sego-Aponte-Gianlupi model to my Remdesivir model in this Chapter. This Chapter was

creating by adapting a section of the Remdesivir model publication [2].

It was very clear at the start of pandemic that we needed a standard to share our methods

and models with other teams, and ways to make sure our models can be easily iterated on

and expanded. This lead to my investigations on how to implement models cross-platform

(see Chapters 4 and 5).

We began this work early in the pandemic, the goals of this work were to make a simula-

tion that replicated the viral time course in a human patient, the variability of outcomes in a

human patient that hasn’t been infected before, and laying the groundwork for an extensible

and reusable framework for multiscale models of infection. We also used this model to do

preliminary investigations of possible treatments. I later carried on the antiviral treatment

investigation in [2], see Chapter 3.

2.1 Introduction

To model the spread of viral infection, cytokine response, and immune cell activity in a

tissue, we created a hybrid multiscale agent-based model of SARS-CoV-2 infection in a

small lung tissue patch, the Sego-Aponte-Gianlupi model [1]. In this model, the infection

progresses as follows: the initially infected cell(s) goes through the viral life cycle; the

infected cell(s) could die during the eclipse phase, if it survives it releases virus into the
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extracellular space (after the eclipse phase) and continues to release virus until it dies. The

virus diffuses and decays extracellularly according to Fick’s law (see Section 2.2), The

description of the Sego-Aponte-Gianlupi model is extensive [1], Section 2.2. presents a

summarized description of the Sego-Aponte-Gianlupi model. It should be noted that with

the default parameters used in the Sego-Aponte-Gianlupi model all the simulated epithelial

cells are eventually infected and die [1]. However, depending on the parameters used, we

also saw containment of the infection by the immune system [1].

2.2 Overview of the Sego-Aponte-Gianlupi Model

Figure 2.1: Results of one of the simulations from the antiviral investigation paper [2].
Top row is the epithelial 2D layer, epithelial cells can be uninfected (blue), infected in the
eclipse phase (green), infected secreting virus (red), or dead (black). Middle row shows the
virus concentration field. Botom row is the immune cells (burgundy) 2D layer. Adapted
from [2].
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The Sego-Aponte-Gianlupi [1] agent-based model is a 2.5-dimensional Cellular Potts model

(CPM), and is implemented in CompuCell3D [10]. We use CompuCell3D version 4.2.3 to

generate the results in the paper. The 2.5 dimensions of the model consist of a 2D epithe-

lial sheet with 900 non-motile epithelial cells and a 2D interstitial plane where immune

cells are represented, move, and interact with the environment. The boundary conditions

are periodic in the y and x directions of the simulation and use Von Neumann boundary

conditions in the z direction. Diffusion-decay of cytokines and extracellular virus occurs

in this interstitial plane. Together the planes represent a patch of (epithelial) lung tissue of

size 0.9mmX0.9mm, represented by 90X90X2 pixels.

We made several simplifications to the biological description of the system, e.g., the

model does not include tissue recovery or creation and release of antibodies [1]. We started

the simulation with one infected cell in the patch (out of 900 cells), and we ended our

simulations at day 14. The parameter values used by the Sego-Aponte-Gianlupi model are

tabulated in my Appendix A.2 Tables A.2, A.3 and A.4, and in the original paper [1]. The

Sego-Aponte-Gianlupi model [1] includes only a single immune cell type that aggregates

behaviors exhibited by different immune cells, mainly NK-cells and CD8+ T cells. The

immune cells chemotax up the local cytokine gradient, kill infected cells on contact, and

release a cytotoxic agent depending on the severity of the infection. After exposure to

local cytokine, immune cells start to release cytokine, taking part in the cytokine signaling.

As the modeled immune cells present behaviors of NK- and T-cells, the adaptive immune

system is partially represented. In Sego-Aponte-Gianlupi’s model, only one cytokine is

used to represent all the cytokines involved in immune signaling.

The cytokine level and the number of immune cells in the infection zone define the

system’s overall pro- or anti-inflammatory state of the system. If the system is in the pro-

inflammatory state, there is a stochastic chance of seeding new immune cells in the domain.

If the immune system model is in the anti-inflammatory state, the simulation may remove

immune cells through a stochastic process.
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In our paper for the Sego-Aponte-Gianlupi model [1], we characterized possible end

states for the simulated tissue domain. By varying the infectivity of the virus and the

strength of the immune response, we simulate situations where the infection sweeps the

tissue, cases where disease containment is achieved, and situations in which the infec-

tion is eliminated but reoccurs (recurring infection of SARS-CoV-2 has been observed in

vitro [15]). We also characterized a particular case of note, ”failure to infect,” a situation

where the infection does not spread significantly beyond the initially infected cells. This

situation happens because of the stochasticity of the simulation, e.g. if an immune cell is

seeded near the only infected cell and kills it, or if the infected cell dies before releasing

infectious virus to the environment and the infection ends immediatly.

2.2.1 Epithelial cells in the Sego-Aponte-Gianlupi model

The epithelial cells in the Sego-Aponte-Gianlupi model are, as mentioned, organized in a

2D epithelial sheet of 900 cells (see Figure 2.1) and are not motile. The epithelial cells can

be in one of four states: uninfected, infected (eclipse phase), virus-releasing and dead.

Each epithelial cell agent has an intracellular viral life-cycle model, and can be infected

with diffusing virus (see Section 2.2.2), making them transition from the uninfected state

to the infected state. Infection happens due to virus binding to epithelial cell receptors and

being internalized (see Section 2.2.3), the now bound receptor is no longer available for

internalization of new virus. The cells can die in several ways, the intracellular levels of

viral particles may kill them, the immune cells can send an apoptosis signal to them, and

the immune cells can release a cytotoxic agent. During the first infection phase (infected in

eclipse) virus is assembled but not released by the cell. Then the cell transition to the viral

release phase and the rate of release increases exponentially and eventually saturates.
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2.2.2 Diffusion of Virus, Cytokines, and Oxidizing Chemical in the Sego-Aponte-

Gianlupi Model

The Sego-Aponte-Gianlupi model has 3 different diffusive species: virus, cytokine, and a

cytotoxic oxidative agent. They diffuse and decay extracellularly according to Fick’s law

over the simulated latice, and reach different cells. Virus can be internalized by the cells,

cytokine triggers the immune response, and the oxidative agent kills epithelial cells.

The equation for viral diffusion is,

∂cvir(p, t)

∂t
= Dvir∇2cvir(p, t)− γvircvir(p) +

1

ν(σ(p))
[ρ(σ(p))− υ(σ(p))] . (2.1)

Where cvir(p, t) is the concentration of virus at pixel p = (i, j), Dvir is the virus diffusion

constant, γvir the virus decay rate, σ(p) the cell at pixel p, ν(σ(p)) the volume of cell σ(p),

ρ the amount of virus being released by cell σ(p), and υ the amount of virus being uptaken

by cell σ(p). The uptake amount (υ) is defined by Equation 2.5 and the release amount(ρ)

by Equation 2.11. Uptake and release is done uniformly over the cell pixels.

Cytokine diffusion is governed by,

∂ccyt(p, t)

∂t
= Dcyt∇2ccyt(p, t)− γcytccyt(p, t) + scyt(σ(p), t) , (2.2a)

scyt(σ(p), t) = sτmax(σ(p))
(csig(σ(p), t))

hcyt

(csig(σ(p), t))
hcyt +

(
V τ
cyt(σ(p), t)

)hcyt
−ωτ

cyt(σ(p), t) . (2.2b)

Where ccyt(p, t) is the concentration of cytokine at pixel p, Dcyt is the cytokine diffu-

sion constant, γcytccyt represents the amount of cytokine leaving the simulated region, and

scyt(σ(p), t) is the amount of cytokine secreted by cell σ(p). The net amount of cytokine

secreted by cell σ(p) depends on the cell type (τ ), the maximum secretion for a cell of
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that type (sτmax(σ(p))), the amount of cytokine uptaken by cell σ (ωτ
cyt(σ(p), t)), a quan-

tity csig(σ(p), t), and the cytokine dissociation coefficient for that cell type V τ
cyt(σ(p), t).

csig(σ(p), t) is the amount of assembled virions for infected epithelial cells (see Equa-

tion 2.10), and the amount of cytokine the cell is exposed to for immune cells. hcyt is the

Hill coefficient for this equation, set to 2.

The oxidizing chemical diffuses according to,

∂coxi(p, t)

∂t
= Doxi∇2coxi(p, t)− γoxicoxi(p, t) + soxi(σ(p)) . (2.3)

Where coxi(p, t) is the concentration of the agent at pixel p, Doxi is the agent’s diffusion

constant, γoxi its decay rate, and soxi(σ(p)) the secretion of the agent by cell σ occupying

pixel p.

2.2.3 Viral Life-Cycle Model

The viral life cycle model begins with virus that is diffusing in the extracellular matrix

entering into the cells [1]. For each cell (σ), the uptake of discrete viral particles is mod-

eled as a stochastic process that depends on (1) the amount of virus on the cell surface

(cvir(σ)), (2) the cell’s volume (V (σ)), (3) the number of unbound ACE2 receptors the

cell has (SR(σ)), (4) the cell’s initial number of unbound receptors (Ro), (5) the binding

affinity (kon) of the virus with the available unbound cell receptors, (6) the virus-receptor

dissociation affinity (koff ), and (7) the time for a single uptake event to occur (αupt). Dur-

ing a short time interval ∆t << αupt the probability of viral uptake (Equation 2.4a), the

amount of virus internalized (if uptake occurs, Equation 2.5, υ), and the change of surface

receptors (if uptake occurs, Equation 2.6) from [1] are, respectively,

Pr(Uptake(σ) > 0) =
∆t

αupt

(cvir(σ))
kupt

(cvir(σ))kupt + (Vupt)kupt
, (2.4a)
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Vupt =
Ro

2konV (σ)SR(σ)
, (2.4b)

υ(σ) =
1

∆t
Pr(Uptake(σ) > 0)cvir(σ) , (2.5)

dSR(σ)

dt
= −υ(σ) . (2.6)

Here, Vupt is the Michaelis constant of the viral concentration for which the probability of

uptake is half maximum and kupt is the Hill coefficient. After cellular uptake, the amount

of virus that enters the cell is removed from the viral field over the cell domain.

A tri-phasic ordinary differential equation (ODE) system governs intra–cellular viral

reproduction in each cell (σ) [1]. The first phase is the eclipse phase, during it viral release

is turned off, after this phase, cells start to release virus at an increasing (but saturating)

rate until the cell dies. The viral replication ODE consists of four processes and vari-

ables representing different parts of the viral replication process: unpacking virions in the

cell (Equation 2.7), genome replication (Equation 2.8), protein synthesis (Equation 2.9),

repackaging of new virions (Equation 2.10). Those equations, from [1], are:

dU

dt
(σ) = υ(σ)− ruU(σ) , (2.7)

dR

dt
(σ) = ruU(σ) + rmaxR(σ)

rhalf
R(σ) + rhalf

− rtR(σ) , (2.8)

dP

dt
(σ) = rtR(σ)− rpP (σ) , (2.9)

dA

dt
(σ) = rpP (σ)− ρ(σ) , (2.10)

12



ρ(σ) = rsA(σ) , (2.11)

with υ the result from Equation 2.5, ru rate of unpacking the internalized virus, rmax the

maximum viral replication rate, rt the rate of translation of viral genome into RNA tem-

plates for protein synthesis, rp protein packing rate, rs assembled virus release rate. The

values for the parameters in equations 2.4–2.11 are in Sego’s Table 1 [1] and in my Ap-

pendix A.2.

In my remdesivir work [2] (Chapter 3), I extend the viral life-cycle model model to

include the effects of the antiviral used (see Equation 3.2 in Section 3.2.3).

2.2.4 Immune system model

Cytokines from the simulated domain leave the tissue and reach the lymph node component

of the model. The lymph node model component determines if the simulation is in a pro-

or anti-inflammatory state. If the lymph node model determines that the model is in a pro-

inflamatory state immune cells may be seeded in the simulated domain, if the system is in

an anti-inflamatory state immune cells may be removed from the simulated domain.

The immune cell population in the simulated domain is controlled by a dimensionless

signal (Equation 2.12) and a probability of seeding/removal determined from the signal

(Equation 2.13). The signal is

dS

dt
= βadd − βsubNimmune +

αsig

βdelay
γcytccyt − βdecayS . (2.12)

Where Nimmune is the immune cell population in the domain, the balance of βadd and

βsubNimmune control the baseline population of immune cells in the simulated domain when

there’s no infection, γcytccyt is the total cytokine that left the simulated domain (see the

cytokine diffusion Equation 2.2), αsig determines the strength of the signal when it reaches

the lymph node, βdelay controls the delay of the signal from the simulated domain to the
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lymph node component, and βdecay controls how fast the signal goes back to zero. The

immune seeding/removal probability is

Pr(seed) = erf(αimmuneS), if S > 0 , (2.13a)

Pr(remove) = erf(−αimmuneS), if S < 0 . (2.13b)

Where erf is the error function, and αimmune controls the sensitivity of the system to S’s

value.

The immune cells are motile and enter the simulated domain in a naive (inactivated)

state. They sense and uptake local cytokine and have a probability of activating which

depends on how much cytokine they uptook (Equation 15 in [1]), they deactivate after 10h.

Once in the activated state, they chemotax on the local cytokine gradient. Immune cells

recognaize infected epithelial cells on contact by antigent recognition and induce cell death

on the epithelial cell. Epithelial cell neighbors of the killed epithelial cell can die through

a bystander effect.

Immune cells also secrete an cytotoxic oxidizing chemical (e.g., H2O2 or nitric oxide)

when they are exposed to high levels of cytokine. This oxidizing chemical kills all epithelial

cells when its concentration over the epithelial cell (coxi(σ)) is above a threshold (τ deathoxi ).

2.2.5 Preliminary Antiviral treatment

In the Sego-Aponte-Gianlupi [1], we did a preliminary analysis of how a treatment could

be simulated. We investigated a viral replication blocker, and a viral entry blocker with

the parameter variation of the viral affinity constant (kon, Equation 2.4b). At the time of

writing the model, chloroquine was being seriously investigated as a possible viral entry

blocker.

We focused on a viral RNA replication blocker because it is the only part of the viral
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replication that has an exponential ramp up of virion production per cell (see Equations 2.7-

2.10). For this preliminary implementation we modeled our drug effect as binary, either off

or at maximum effectiveness. This translates into a reduction of the maximum RNA repli-

cation rate (rmax, Equation 2.8) during the simulation. We studied several rmax reductions

and several treatment start times. In my Remdesivir investigation [2] (see Chapter 3), I

improved the preliminary drug model to include Remdesivir’s pharmacokinetics, pherma-

codynamics, and possible variability of Remdesivir’s effectiveness on different cells.

2.3 Sego-Aponte-Gianlupi Selected Results

Using the default parameters, the Sego-Aponte-Gianlupi model [1] predicts that, although

the immune response slows the infection, it still sweeps the tissue and all epithelial cells

die (Figure 2.2). However, depending on the parameters used, we also saw containment of

the infection by the immune system [1]. At early times, the only virus available to infect

additional cells is that which is released by the initially infected cell(s). This mechanism

of cyclic infection can lead to quasi-synchronous bursts of cells becoming infected early in

the infection.
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Figure 2.2: Simulation time-courses. A) Population of epithelial cells in different infection
stages, uninfected in orange, infected eclipse phase in green, infected releasing virus in red,
and dead cells in purple. B) Total diffusing cytokine and virus (arbitrary units), cytokine
in magenta, and virus in brown. C) Immune model data, simulated domain immune cell
population (grey), immune recruitment signal (S, Equation 2.12). Adapted from [1].

We performed a sensitivity analysis on the viral binding affinity constant (kon, Equa-

tion 2.4b), and the immune system delay constant (βdelay, Equation 2.12). We found that a

virus with greater affinity (large kon) together with a slow immune response (large βdelay)

result in faster infection progression and death of all simulated epithelial cells (Figure 2.3).

A very infectious virus can still be contained by a fast-acting immune system.
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(a)

(b)

Figure 2.3: sensitivity analysis on the viral binding affinity constant (kon), and the immune
system delay constant (βdelay). 2.3a) . Adapted from [1].
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2.4 Sego-Aponte-Gianlupi Discussion

In the Sego-Aponte-Gianlupi model we were able to include several aspects of primary

airway infection. We matched our simulation results to data available at the time. Our

simulation predicted different outcomes for the infection and which parameters moved the

simulation outcomes from one result to the other. We were also able to create a preliminary

implementation of possible antiviral treatments.

The modularity of the framework was a success. We showed in the Sego-Aponte-

Gianlupi paper [1] that we can easily swap the viral infection model to model hepatitis

instead of SARS-CoV-2. The framework also showed its flexibility in subsequent works,

such as my Remdesivir model [2], and Aponte et al.’s plaque growth dynamics model [16].

Although out implementation is flexible and easily modifiable, it is still limited to one

modeling framework, CompuCell3D. In Chapters 5 and 4, I explain my efforts into methods

that either are general to many frameworks, or to convert a model made for one framework

to another.
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CHAPTER 3

MULTISCALE MODEL OF ANTIVIRAL TIMING, POTENCY, AND

HETEROGENEITY EFFECTS ON AN EPITHELIAL TISSUE PATCH

INFECTED BY SARS-COV-2

3.1 Introduction

The COVID-19 pandemic has inspired the rapid discovery, development, and distribution

of antiviral and immune-modulatory drugs and vaccines. Computer simulations of within-

host response have assisted in the rapid screening of candidate drug treatments [17]. Math-

ematical models and their computer simulations enable us to explore alternative treatment

regimens using existing drugs rapidly [18]. Models of absorption, distribution, metabolism,

and elimination (ADME) in specific organs and the body as a whole and the pharmacokinet-

ics of drugs within individual cells, such as at the cellular infection level, and the immune

system, can be leveraged to advise clinical trials for infectious diseases [19–21].

Clinical trials of remdesivir as a possible treatment for COVID-19 followed the dec-

laration of the 2020 pandemic by the World Health Organization [22–24]. Remdesivir is

a single diastereomeric mono-phosphoramidate prodrug designed to arrest the replication

of RNA viruses. Upon remdesivir administration, the patient’s body generates sequential

metabolic intermediates before forming the active nucleoside triphosphate, GS–443902

(GS-441524-triphosphate). The active metabolite then binds to the elongating viral RNA

synthesized by RNA-dependent RNA polymerase (RdRp) as a nucleoside analog and blocks

viral replication [25]. The first clinical trials for remdesivir were as a treatment for the

Ebola virus [14, 24]. Most of these trials administered a 200 mg intravenous (IV) infusion

loading dose followed by 100 mg IV daily infusions for five to ten days. However, the full

breadth of therapeutic schedules remains unexplored, given the urgency required for drug
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development during the pandemic. To that end, we modelled remdesivir and its mechanism

of action (MOA) on a patch of lung epithelial tissue infected by SARS-CoV-2 to provide

a more comprehensive understanding of the interplay of remdisivir dose and timing, and

outcomes.

Even though we frame our work in the context of SARS-CoV-2 and remdesivir treat-

ment, our methods are general to other viral infections and antiviral treatments. We have

developed our own MOA model for remdesivir. There are several antiviral drugs with simi-

lar MOAs [26, 27], and previous modeling works simulated treatment with these drugs [28,

29]. Experiments on SARS-CoV-2 infection in non-human primates (rhesus macaques) and

associated mathematical models have shown that an antiviral drug treatment with lower ef-

ficacy may elongate the duration of the viremic profile even if the treatment initiation is very

early [30–32]. Given these results, the present model focuses on the relations of the drug

potency, treatment initiation time and dose interval with the viraemia as crucial players,

and performs a thorough scan of all related parameters to elucidate a reasonable treatment

regimen.

Various models have described remdesivir’s pharmacokinetics (PK), models ranging

from one-compartment models to complex physiologically-based pharmacokinetic (PBPK)

models [22, 23, 33]. Researches have also developed combined pharmacokinetic-pharma-

codynamic (PK-PD) models for COVID-19. Goyal et al. used a two-compartment PK

model for remdesivir at different potency and timing of treatment to predict how other

parameters affect the disease progression and treatment efficacy [34, 35]. The authors ob-

served that initiating antiviral treatment after symptom onset required antiviral concentra-

tions that reduced viral production rate by more than 90% (>90% drug efficacy) to achieve

a two log reduction in plasma viral load. If administration started at the time of infec-

tion (before the onset of symptoms), 60% drug efficacy achieved a similar reduction of

viral load. They have also run theoretical kinetics of remdesivir drug resistance for various

treatment regimens.
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For the pharmacokinetics of remdesivir, we modified a PBPK model created by Gallo [33],

a hybrid, full-PBPK model for remdesivir with 15 tissue compartments. Their PBPK model

is very detailed and recovers remdesivir’s dynamics in several tissues and plasma. Our fo-

cus is on the concentration of the active metabolite of remdesivir in lung epithelial cells;

therefore, we opted to simplify Gallo’s model (see Methods 3.2.2). As remdesivir is given

intravenously (IV) and has a long half-life (t1/2 = 30.2h) [23], we study dosing intervals

longer than one day. Treatments using more extended periods may be helpful for patients

that require remdesivir administration but are not in a condition severe enough that re-

quires hospitalization. This approach could help alleviate hospital overcrowding and could

improve treatment adherence. We also aim to characterize the interplay of drug potency

and schedule on infection dynamics and treatment outcomes.

The above models (coupled population, PK and PD models) can be used to study effects

on infection dynamics arising from changing drug potency, half-life, and dosing sched-

ule. Population models assume well-mixed conditions, meaning that the model exposes

the entire cell population to the same amount of infectious virus at any instance. A cellular

agent-based model (ABM) can complement such models by adding multi-cellular-scale res-

olution [36]. ABMs are an effective simulation technique to model a population of agents.

In ABMs the agents are capable of independent decision-making according to assigned

attributes and conditions [37, 38]. Cellular ABMs can introduce tissue heterogeneity to

models by their very nature, as cells are individually modeled and can differ from one an-

other, space itself is a model component [1, 4, 39–41]. A recent report on comparative

biology immune ABM (CBIABM) has presented a model of mechanism-based differences

in bat and human immune systems and discusses the consequences of these differences on

disease manifestation [42]. In [4], population models of infection calibrated to experimen-

tal data were used to generate an equivalent spatially heterogeneous ABM of infection. The

authors found that viral infectivity estimates using the ABM differed from the estimates

from the population model by as much as 95% [4]. These differences in viral infectiv-
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ity, or some other characteristic of the infection dynamics, could mean that a population

model and an ABM calibrated to the same experimental data can significantly differ in their

estimates for effective drug doses and schedules.

Furthermore, infection in a tissue starts from some discrete points of infection and

spreads from them [43, 44]. Therefore, spatially heterogeneous distribution of target cell

states is expected, with further disease progression near the initial infection location (necrotic

sites), to regions farther from initial infection sites, where the infection has not begun. Cy-

tokines concentrations will also be heterogeneous. Since infection can spread within a

tissue even if a few cells release virus, this spatial relationship between uninfected and

virus releasing cells may determine how effective an antiviral needs to be to contain the

viral spread. Heterogeneity in cells reactions and drug delivery and its possible effects on

disease and treatment is a topic of active study for COVID-19 [45], other diseases, and

substance toxicity [46–49].

In the present ABM, we leverage our already established model of epithelial lung tis-

sue infected by SARS-CoV-2 [1] implemented in CompuCell3D [10]. Our simulated en-

vironment models epithelial lung tissue infected by SARS-CoV-2, including cell surface-

receptor (ACE2) affinity, intra–cellular viral replication, infectious-diffusive virus release,

immune response, cytokine signaling by the epithelial and immune cells. We expand on

those capabilities by incorporating a pharmacokinetic (PK) model of remdesivir and its

dosing regimens, as well as a model for remdesivir’s mode-of-action (MOA). We explore

the effect of varying the time of treatment initiation (from the number of hours after the

infection of ten epithelial cells), the potency of remdesivir’s active metabolite (by varying

IC50), and the interval between doses.

As we are simulating a spatially resolved model, we can test the effects of cell-to-cell

variability. The amount of drug reaching each cell in the target tissue varies. This variation

can result from: (1) different availability and different distance from capillaries (micro-

dosimetry); (2) uptake rate differences (density and dynamics of cell-surface proteins); (3)
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conversion rate from prodrug to active metabolite based on intra–cellular enzyme concen-

trations; (4) Effect of cell-ageing on metabolic rates; (5) cell-cycle phases. To model each

of these separately one needs a detailed model of cellular metabolism, life cycle and cap-

illary structure. Therefore, in the simulations, we expose each cell to a homogeneous con-

centration of the antiviral drug, and combine the different possible sources of intra–cellular

metabolic heterogeneity into an effective change of the uptake and elimination rates, see

Methods 2.2 and 3.2.4.

Cells with internal concentrations of remdesivir-active metabolite below concentrations

that control the viral replication are significant contributors to viral synthesis and release,

and determine the consequent spread of infection. Their spatial distribution in the tissue is

key, as those will be the regions of significant infection activity. The duration over which

the concentration of the active metabolite is below the effective concentration also matters.

Our previous work [1] demonstrated that if cells unblock RNA synthesis, even for a short

time, the amount of functional RNA produced will be small, and one can expect reasonable

inhibition of viral release.

We believe our methods can be of great use in early drug and treatment development

when characterization of the drug’s PK and PD are not well established. We change the

remdesivir’s potency and half-life in our model to investigate how those changes affect

the disease progression and treatment effectiveness (see Results 3.3.3.2 and 3.3.3.3). Our

heterogeneous drug metabolism model predicts that higher doses (by ≈ 50% or more) are

necessary to achieve the same level of treatment success compared to our homogeneous

metabolism model results (see Results 3.3.3.2 and 3.3.3.4). Although the cellular level

heterogeneity has not been measured experimentally, our results suggests that treatment

outcomes depend on the intensity of heterogeneity (see Results 3.3.3.6). We hypothesize

that the least sensitive cells to the antiviral drive the infection forwards (super-spreader

cells).

This work addresses the following questions: How significant are the effects of remde-
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sivir’s dosing interval on treatment outcomes? What is the impact of heterogeneous cellular

drug uptake and elimination on viral load (heterogeneous cellular drug metabolism)?

3.2 Materials and Methods

We sought to compare the spread of infection as represented by the total number of cells

infected versus time and the viral load versus time under different remdesivir treatment

schedules. Achieving this goal requires several model components: (1) viral entry into the

target epithelial cells, (2) viral replication within epithelial cells, (3) release of virus and

spread of infection within a tissue, (4) immune response and its effect on viral spread within

the tissue, (5) the kinetics of the concentration of drug active metabolite as a function of

time after dosing and (6) effect of the active metabolite on viral replication within individual

infected epithelial cells.

Our computational model includes a multicellular spatial model of SARS-CoV-2 in-

fection of a lung tissue patch composed of epithelial cells, an effective immune response

module, and a minimal PK model of available active metabolite of remdesivir in individual

epithelial cells. The PK model estimates changes in concentrations of remdesivir triphos-

phate (GS–443902) in lung epithelial cells after intravenous (IV) infusion of remdesivir in

humans. We base our PK model on the Gallo model [33]; Gallo’s model estimates GS–

443902 kinetics in peripheral blood mononuclear cells (PBMC) following IV infusion of

remdesivir. We assume that the kinetics of exposure, uptake, and metabolism of the two cell

types (PBMC and lung epithelial cells) are similar, although the absolute tissue metabolite

concentrations might differ. We describe each sub-model and their integration below.

3.2.1 Changes to the Sego-Aponte-Gianlupi model

We opt to simulate for 28 days even though the biological realism declines (e.g., lack of

tissue recovery or antibody response). Each of our ABM simulations over 28 days took 40

to 100 minutes of computation time on Indiana University’s Carbonate super-computer. As
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we are simulating an intervention that aims to contain the spread of infection, differentiat-

ing spontaneous results of ”failure to infect” and effective treatment would be difficult and

cumbersome. We, therefore, opted to perform more simulation replicas with the default pa-

rameters of the Sego-Aponte-Gianlupi model [1] but varying the initial number of infected

cells. We ran the Sego-Aponte-Gianlupi model [1] with a single infected cell at the start

out of 900 epithelial cells (same as in the original), with two infected cells out of 900, five

out of 900, and ten out of 900. For each of those initial conditions, we ran 400 simulation

replicas.

As mentioned, in the original model [1], the single initially infected cell (out of 900 ep-

ithelial cells) is placed in the center of the simulated domain; we randomize the position(s)

of our initially infected cell(s). We can quantify the ”failure to infect” rate and choose a

starting condition that fits the goals of this paper. Results of this investigation are in Re-

sults 3.3.2, Figure 3.4. We find that starting with five initially infected cells eliminates

spontaneous failures to infect without resulting in a fast sweep of the tissue by the infection

(mean time to full tissue infection stays close to 15 days).

In this study, we extend the viral life-cycle model to include the effects of the antiviral

modeled in 3.2.2.

3.2.2 Remdesivir physiologically based pharmacokinetic model

Gallo [33] previously published a detailed PBPK model of remdesivir. As we focus on

the concentration of the active metabolite of remdesivir in lung epithelial cells, many de-

tails of the Gallo model are of limited relevance to our work. Accordingly, we build a

parsimonious model to replicate the ADME and intra–cellular availability of remdesivir’s

active metabolite based on the time-course following IV infusion of remdesivir. We use

COPASI [50] version 4.30 (Build 240) to replicate Gallo’s model and build our simplified

model. The original PBPK model included 6 differential equations and 12 parameters. Our

model assumes that remdesivir is metabolized into its active component (GS–443902) in
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the target tissue at the infusion rate, as its metabolism into the active metabolite is very

rapid in the target tissue [14], then GS–443902 is eliminated by a first-order process. Fig-

ure 3.1 shows the simplified model structure. The single remaining equation for the PK

model representing GS–443902 as a function of the infusion rate of remdesivir is:

d (CGS)

dt
= kappDrmd − koutCGS , (3.1a)

kapp =
kin

vol τI
, (3.1b)

with kin denoting the uptake rate of GS–443902, CGS the concentration of GS–443902,

Drmd the dose of remdesivir, vol the effective compartment volume (in Liters), τI the time

required to infuse remdesivir (1h), and kout the excretion rate for the active metabolite.

We use kin as the infusion on/off switch. The values for the parameters are in Table 3.1.

As part of this study, we investigate the effects of schedule on the simulated treatment,

e.g. remdesivir is given every 48 hours instead of every 24. To keep the total amount of

remdesivir administered constant, we change the infusion amount Drmd with the schedule

change. E.g. the 48h schedule uses a dose of remdesivir that is double that of the 24h

schedule, Drmd(48h) = 2×Drmd(24h). As shown in the Appendix Figure A.1, this simple

model reproduces the CGS time course within the uncertainty in the Gallo model, including

underlying PBMC data as well as the European Union’s compassionate use data [51].

Figure 3.1: Schematic diagram of the minimalized PBPK model of remdesivir. PBMCs are
a surrogate for lung alveolar epithelial cells for GS–443902.

26



Table 3.1: List of parameters used for the minimal PBPK model of remdesivir.

Parameter Value Source
kin (unit-less) 0 or 1 Fit to [23]

GS–443902 observed
Half-life, t1/2 (h) 30.2 [23]

kout, GS–443902’s
decay rate (1/h) ln(2)/t1/2

Drmd (mg/day) 100 (200 for loading dose)
Doses used in

clinical situations
vol (L) 38.4 Fit to [23, 51]
τI (h) 1

3.2.3 Remdesivir mode of action (MOA) model

Remdesivir works as a nucleotide analog by binding to the elongating RNA being syn-

thesized by RdRp [25]. To model this, we extend Sego-Aponte-Gianlupi ’s [1] genome

replication Equation 2.8 by modifying rmax as a function of the cell (σ) intra–cellular GS–

443902 concentration (CGS(σ)). Thus, we modify Equation 2.8 to

dR

dt
(σ) = ruU(σ) + r′max(σ)R(σ)

rhalf
R(σ) + rhalf

− rtR(σ) . (3.2)

We also add the following equation for r′max,

r′max(σ) = rmax
IC2

50

IC2
50 + C2

GS(σ)
= rmax

1

1 +
(

CGS(σ)
IC50

)2 , (3.3)

where IC50 refers to GS–443902’s intra–cellular IC50, the value for IC50 is in Table 3.2.

The equation for r′max is a inhibitory Hill function. In order to determine the Hill

coefficient, we fit a Hill equation to data of SARS-CoV-2 inhibition by remdesivir from

Choy et al. [52] and Pizzorno et al. [53]. We found the value of the Hill coefficient in the

range from 1 to 4 and chose 2 as the value to be used in the current study. As the intra–

cellular IC50 for GS–443902 is unknown, especially in vivo [54, 55], we define a base IC50

of 7.897µmol/L using our pharmacokinetics model (see sections 3.2.2 and 3.3.1, Table 3.1,
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and Figure 3.3). Our investigation explores different drug potencies or doses by varying

this base IC50 by using multipliers in the range [0.01, 10] (Table 3.2).

3.2.4 Heterogeneous cellular metabolism of remdesivir modeling

The simple remdesivir PK model is present in our multicellular simulations as a component

of lung epithelial cells. Each epithelial cell has a synchronized but independent copy of the

model, and each cell occupies a different region of space. This method allows us to inves-

tigate the effects of heterogeneous metabolism of remdesivir by the epithelial cells. The

present model avoids any complex tissue specifications by simulating a tiny patch of lung

epithelial tissue. The model focuses how the intercellular heterogeneity of drug metabolism

is concerned with the infection outcome. Certainly, there are many other sources of hetero-

geneity, which we do not consider here to minimize the cross-correlation of the stochas-

ticity from multiple sources of heterogeneity, e.g., distance from blood capillaries, tissue

topology, cell age, etc.

We initialize each cell with drug metabolic parameters (kin and kout) at the beginning

of the simulation. At the same time, to simulate metabolic heterogeneity, we modulate the

metabolic parameters with random numbers selected from a Gaussian distribution. For a

cell (σA), we draw a random number θ(σA) for each of those metabolic parameters, and we

then change each metabolic parameter by multiplying it by 1 + θ(σA), i.e.,

θin(σA) = N (µ = 0, ξ = 0.25) , (3.4)

k′in(σA) = kin (1 + θin(σA)) , (3.5)

θout(σA) = N (µ = 0, ξ = 0.25) , (3.6)
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k′out(σA) = kout (1 + θout(σA)) . (3.7)

θ is selected from the normal distribution N with mean µ (set to 0) and standard deviation

ξ (set to 0.25). If |θ| > 1, we draw a new number from N until |θ| ≤ 1. To keep the total

metabolic rate over the simulated tissue patch constant, we select another cell (σB) to have

its metabolic rates modified by 1− θ(σA) (the same θ as for cell σA),

k′in(σB) = kin (1− θin(σA)) , (3.8)

k′out(σB) = kout (1− θout(σA)) . (3.9)

A spatial distribution of the modified rate parameters is shown in Figure 3.2.

(a) (b)

Figure 3.2: Simulated epithelial cell layers colored by the change in kin 3.2a, kout 3.2b.
The values displayed are relative to the base kin and kout, a cell colored blue in 3.2b has,
e.g., k′out(σ) = 0.3× kout

Typical PBPK models do not consider the effects of heterogeneous responses by the

cells in the tissue, as each compartment is considered well-mixed. In reality, a cell with

rapid clearance of the drug may deplete the intra–cellular antiviral and restart viral produc-
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tion, release and infect neighboring cells. The difference between our model and traditional

PBPK models is precisely that our model addresses this spatial heterogeneity issue.

Table 3.2: List of parameters for the ABM and PD models as well as parameters varied for
the treatment effectiveness investigation

Parameter Values used
Total epithelial population 900

Number of initially
infected cells 5

Treatment initiation
delay (day) 0, 1, 3

Time between
antiviral doses

8, 12, 24, 36, 48, 60, 72,
84, 96, 108, 120, 132, 144

Remdesivir doses
(rescaled to match

the schedules)
(mg)

25, 50, 100, 150, 200, 250, 300,
350, 400, 450, 500, 550, 600

Base IC50 (µmol/L) 7.897
Viral replication rate reduction (equation 3.3)

Hill coefficient 2

IC50 multipliers
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09, 0.1, 0.5, 1, 5, 10

3.2.5 Simulating antiviral treatment regimens and treatment classification metrics

We simulate a 28-days daily dose regimen for remdesivir, studying the infection dynamics

over that time. We initiate remdesivir intervention at different time points with a loading

dose followed by a maintenance dose according to our PK model. The dose is rescaled

based on the time in-between doses, i.e., if the daily dose is 100mg, the dose every two

days is 200mg.

We start the simulation with five infected cells, and when another five cells are infected,

we consider the infection is onset. We initiate treatment 0, 0.5, 1, or 3 days after infection

onset. The initial level of infection of a tissue patch can be compared with the infection

of a cultured cell population. For in vivo infection experiments with woodchuck hepatitis

virus (WHV), Lew et al. [56] found different infectivity and pathogenicity outcomes with
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different inocula of similar titer concentrations. Beginning with ≈ 0.5% (5 out of 900) of

tissue cells infected is higher than what would be expected. However, we can imagine our

infected tissue patch is surrounded by uninfected tissue that we do not simulate. For each

parameter combination, we run eight simulation replicas. We classify simulation results

using the median behavior of critical simulation metrics, e.g., the uninfected population.

Thus, we can not only differentiate effective from ineffective treatments but also create

more specific classifications:

Rapid clearance (effective treatment) results from more potent and frequent treatments.

Elimination of extracellular virus is achieved in less than 14 days, and there was no subse-

quent release of the newly generated virus (green plots in Figures 3.7, 3.8, 3.10, 3.11, and

Appendix A.6).

Slow clearance (effective treatment): simulations where extracellular virus slowly de-

creases (over more than 14 days). In some cases new extracellular virus was produced

when the antiviral concentration was low, generating an oscillation of the extracellular virus

concentration around the decreasing trend. In some slow-clearance simulations, the extra-

cellular virus cleared completely, then infection restarted once the antiviral levels dropped

sufficiently (blue plots in Figures 3.7, 3.8, 3.10, 3.11, and Appendix A.6).

Partial containment (partially effective treatment): simulations with a mid-low potency

result in a stable level of extracellular virus. Because the treatment is fairly effective,

it keeps the viral load very low and the rate of infection of new cells is also very low.

Therefore many target-cells remain uninfected throughout the duration of the simulation.

The low viral load leads to a low continuum rate of infection of new target-cells roughly

balancing the death of virus producing cells and the clearance of extracellular virus. In this

scenario, the low dose treatments delay the infection of all target-cells and, thus, delays the

onset of target-cell limited viral clearance. However, the treatment by itself is insufficient to

eliminate the virus completely during the period simulated. Clearance of this low number

of infected cells would likely be achieved by the adaptive immune response, which we do
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not model. Note that if we ran the simulation long enough we would achieve either target

cell-limited clearance or elimination of the virus by the drug. We do not imply that drug

treatment makes the infection worse. The rough equilibrium of infection of new cells and

viral clearance implies that these simulations are on the transition line separating effective

from ineffective treatment. For a longer time between doses, we observe extracellular virus

levels oscillating around a steady value (black plots in Figures 3.7, 3.8, 3.10, 3.11, and

Appendix A.6).

Widespread infection (ineffective treatment): simulations resulting from sufficiently

low potency or large periods in-between doses has the extracellular amount of virus in-

crease during the treatment simulation. Treatment in these cases does not impede infection

of all cells and subsequent death of the simulated epithelial tissue occurs. Some simulations

have viable cells at the end of simulation with the amount of virus still increasing. Presum-

ably, if run for a longer time, these simulations would also result in complete infection and

death of the tissue. This category includes simulations with an observed decrease in extra-

cellular virus towards the end of the simulation; this occurs after the death of all epithelial

cells as virus production ceases (target-cell limited clearance) (red plots in Figures 3.7, 3.8,

3.10, 3.11, and Appendix A.6).

To classify the simulation results among these classes, we first check the median over

simulation replicas of the uninfected cell population at the end of the simulation. If they

number less than ten or less than half the median uninfected population at the start of

treatment, we classify the treatment as ineffective with widespread infection. We then look

at the median viral load; if it goes below a threshold and does not rise above it, we classify

the results as ”effective treatment” with rapid clearance (if cleared in less than 14 days) or

slow clearance (otherwise). If the median viral load rises back to levels above the threshold,

we look at the median viral load peaks trend. If the peaks are trending to higher levels, we

classify the simulation results as ineffective treatment with widespread infection. If the

trend is near zero (stable), we classify the results as partial containment. If we observe
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decreasing trends, we classify the results as slow clearance. Greater detail regarding the

definition of these metrics are in Appendix A.3.

3.3 Results

3.3.1 Remdesivir PK model

We first calculate the intra–cellular metabolite concentration over time as a function of

dose and dosing schedule. The critical information is the time to accumulate to IC50 and

how long the concentrations stay above and below values that effectively shut down viral

replication.

The intra–cellular IC50 of GS–443902 is unknown [54, 55]. To define an IC50 for GS–

443902 in our simulations and to characterize the GS–443902 concentration time-course

and accumulation in our PK simulation we first simulated our PK model to 14 days. We

then analyzed the peaks and troughs of the concentration and set the peak-troughs midpoint

to be our model’s IC50 (7.897µmol/L, Table 3.2).

We then assessed the systems-level effects of different potencies of remdesivir. Clin-

ically, drugs are usually given to achieve plasma concentration of the drug about 5-10

times the IC50 [57]. For the potency investigation, we multiply the base IC50 by a set of

multipliers (in the range of 0.01 to 10, Table 3.2). We explore dosing regimes in which

remdesivir effectively shuts off viral production in all cells; other situations where it leaves

a significant number of cells releasing virus at all times; and intermediate situations. Part

of our investigation is about the effect of the dosing schedule. We have included the PK

concentration profiles to 28 days for all schedules investigated in Figure 3.3b.
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(a)

(b) (c)

Figure 3.3: 3.3a Concentration of GS–443902 (remdesivir’s active metabolite) for a 14 days
treatment with a 200 mg loading dose and 100 mg subsequent daily doses (IV infusion) is
obtained by solving Equations 3.1a and 3.1a. Concentration peaks (red) and troughs (blue)
are pointed out, their mid-point (dashed line) is our base IC50. 3.3b Concentrations of
the active metabolite, GS–443902, in PK simulations for the different dosing regimens of
remdesivir, the doses are rescaled to keep the total average amount of remdesivir given over
24 hours constant. 3.3c Some selected PK profiles from 3.3b.

3.3.2 Variability of outcomes in Sego-Aponte-Gianlupi ’s model

To understand the effect of treatment, first, we quantify the natural variability of infec-

tion progression outcomes in the original model (without any treatment simulation). This

variability depends on model parameters, which we do not change from the original Sego-

Aponte-Gianlupi model [1] and on the initial number of infected cells.

In the Sego-Aponte-Gianlupi model [1], as discussed previously in Section 2.2, simula-

tions using the base parameters result infection sweeping in the the tissue. However, some

34



simulations using the default parameters show ”failure to infect”, in which the initially-

infected cells die before releasing enough virus to infect a substantial number of the re-

maining cells. This may happen because the initially infected cells are killed by immune

system cells, or by viral stress, soon after the simulation starts, while it is in the eclipse

phase. The simulation, therefore, ends with almost all cells uninfected. Sego et al. [1] also

demonstrated that their model is capable of immune containment of the infection depending

on the simulation parameters.

These ”failure to infect” results are problematic when we start our treatment investi-

gation. We cannot distinguish for any individual simulation replica in which the infection

failed to spread, whether it failed because of the treatment or whether it would have failed to

spread regardless of treatment. Distinguishing these cases from effective treatment would

require a vast number of replica simulations. We significantly reduce the number of repli-

cas required per parameter set by selecting initial conditions that guarantee widespread

infection in the absence of treatment (i.e., eliminating ”failures to infect”).

As mentioned, we run Sego-Aponte-Gianlupi model [1] with a single infected cell at

the start out of 900 epithelial cells, with two out of 900, five out of 900, and ten out of

900. To quantify the prevalence of ”failures to infect,” we run 400 simulation replicates for

each of those initial conditions. With a single initially infected cell, 15.75% of the replicas

resulted in failures to infect; with two initially infected cells, there was a 1.25% rate of

”failure to infect”; and with five and ten initially infected cells, there were no failures to

infect. With a single initially infected cell, the mean time for widespread infection of the

simulated patch was 16.04 days (excluding failures to infect), with two initially infected

cells, the mean was 27.4 days (excluding failures to infect), with five 18.6 days, and with

ten the mean time to full infection was 11.4 days (see Figure 3.4).
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(a) (b)

(c) (d)

Figure 3.4: Uninfected cell populations for 400 replicas of the Sego-Aponte-Gianlupi
model [1] are shown using Sego-Aponte-Gianlupi ’s default parameters [1]. In all the
cases the medians of simulation replicas are in black lines, the 0th to 100th quantiles are
shaded as dark blue, 10th to 90th shaded in orange, and the 25th to 75th as light blue.
3.4a) Simulations start with 1 initially infected cell and 63 simulations result in ”failure to
infect” (15.75% of replicas), the 90th quantile includes the upper bound of the number of
cells. 3.4b) Simulations start with 2 initially infected cells where 5 simulations result in
”failure to infect” (1.25%), the 100th quantile includes the upper bound of the number of
cells. 3.4c) Simulations start with 5 initially infected cells. 3.4d) Simulations start with 10
initially infected cells.

As the infection starts synchronized, different generations of infected cells were ob-

served at early simulation times (Figure 3.4). This is observed as a sharp drop in unin-

fected cells followed by a less severe infection phase followed by another drop due to the

first generations of infected cells releasing virus and dying while the next generation of

infected cells is still in the eclipse phase or has not been infected yet. As the simulation
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progresses, the infection loses its synchronization due to the stochastic effects.

We opt to carry out the remainder of our investigations with five initially infected cells.

Initiating simulations with five infected cells removes the failures to infect results (mak-

ing treatment comparisons easier) while keeping the time to full infection similar to the

original. In Figure 3.5, we show the viral load for simulations with five initially infected

cells (i.e., the initial condition for our investigation) without any treatment. The viral load

peaks around day 10, which is within confidence intervals of measured viral load curves

of within-host experimental data. For example, our viral replication model matches data of

severe cases of COVID-19 in humans from Yanqun Wang, Lu Zhang, et al. [58]. In [58],

patients with severe COVID-19 had a viral load peak 10-15 days after symptom onset.

Those patients also had detectable virus after 20-25 days of symptom onset. In truth, viral

load data for SARS-CoV-2 is still messy, especially with the several variants (of concern

or not) in circulation (any of which could have different viral kinetics), as seen in Wölfel,

Roman, et al. [59]. In any case, in this work we use SARS-CoV-2 and remdesivir as fram-

ing devices, not as the end goal of our simulations. The viral loads, viral production AUC

and infected populations in untreated simulations with other initial conditions are in the

Appendix A.5.
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Figure 3.5: Extracellular viral load curve for untreated simulations with five initially in-
fected cells in the tissue patch.

3.3.3 Predictive treatment outcomes

We investigate the effects of frequency, potency, active metabolite half-life, treatment start-

time, and tissue heterogeneity on antiviral treatment outcomes for a viral infection on lung

epithelial tissue. We model SARS-CoV-2 and remdesivir specifically, our methods are

generalizable to other viruses and antivirals. We first investigate the case of homogeneous

tissue, beginning with a coarse variation of the IC50 multiplier and dose-interval, (in Sec-

tion 3.3.3.1). We then do a finer parameter investigation of those parameters to define the

precise boundary of effective and ineffective treatment (see Results 3.3.3.2). We then inves-

tigate the effects of having a shorter half-life for the active component (see Results 3.3.3.3).

Finally, we investigate the heterogeneous metabolism of GS–443902 by epithelial cells (see

Results 3.3.3.4).
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3.3.3.1 Coarse parameter variation

For the coarse parameter investigation, we choose 0.01, 0.05, 0.1, 0.5, 1, 5, and 10 as the

IC50 multipliers and 8, 12, 24, 48, and 72 hours as the dosing periods (Figure 3.6). At

this point of the investigation, we do not explore the effect of delaying treatment initia-

tion, all treatments start with the infection of 10 cells, and the cellular metabolic rates are

homogeneous.

The most informative metric to distinguish effective from ineffective treatments is the

amount of extracellular diffusive virus. This metric allows us to define subcategories of

effective / ineffective treatment. Not surprisingly, we observe that larger IC50 multipliers

(lower potencies) and larger periods between doses result in higher levels of extracellular

virus.

In this coarse investigation, we see that the simulated system transits from effective

to ineffective treatment when the IC50 multiplier changes from 0.05 to 0.1 (Figure 3.6).

However, we do not see dosing interval effects here.
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(a)

(b)

Figure 3.6: Coarse parameter investigation (10 replicas of the treatment simulation). Treat-
ment starts with 10 infected cells. For all subfigures the median measurement of simula-
tion replicas is the black line, the 0th to 100th quantiles are shaded as dark blue, 10th to
90th shaded in orange, and 25th to 75th as light blue. Treatments with an IC50 multiplier
< 0.055 contain the infection, while treatments with IC50 multiplier ≥ 0.05 do not. The
top two rows show a reduction of viral load due to treatment, while in the lower two rows
the decrease is due to all cells being dead 3.6a Uninfected cell population. 3.6b Extracel-
lular diffusive virus; y-axis in log scale, exponent values as tick-marks.
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3.3.3.2 Fine parameter variation

After exploring the effects of coarse model behavior, we focus on the transition region

between containment and no containment. IC50 multipliers of 0.01, 0.02, 0.03, 0.04, 0.05,

0.06, 0.07, 0.08, 0.09, and 0.1 and dosing periods of 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, and

6 days are explored (Figures 3.7 and 3.8).

The results presented here are the measurements of uninfected population and diffusing

virus for simulations where treatment starts with the infection of ten epithelial cells (Fig-

ure 3.7) and simulations where we delay treatment initiation by three days (Figure 3.8).

For figures of the other metrics (number of dead cells, cytokine levels, etc.) and simula-

tions where treatment starts 12 hours and one day after the infection of ten epithelial cells

see Appendix A.6.1. We investigate the effects of diminishing GS–443902 ’s half-life by

50% and by 75% in Section 3.3.3.3 and Appendices A.6.2 and A.6.3. And the effects of

heterogeneous metabolism of GS–443902 in Section 3.3.3.4 and Appendix A.6.4.
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(a)

(b)

Figure 3.7: Treatment starts with the infection of 10 epithelial cells. For all subfigures the
median measurement of simulation replicas is the black line, the 0th to 100th quantiles are
shaded as dark blue, 10th to 90th shaded in orange, and 25th to 75th as light blue. Rapid
clearance plot axis in green, slow clearance plot axis in blue, partial containment in black,
widespread infection in red. 3.7a Uninfected cell population. 3.7b Extracellular diffusive
virus; y axis in log scale, exponent values as tick-marks.

In Figure 3.7, there is no delay to treatment start. The system transits from effective

treatment to ineffective treatment upon changing the IC50 multiplier from 0.05 to 0.07. We

also see the effects of drug dosing frequency; for the IC50 multiplier of 0.05, the treatment
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outcome shifts from fast clearance to slow clearance when we change the scheduling period

from 72h to 108h. For the IC50 multiplier of 0.06, we see the transition from slow clearance

to partial containment when we change the period from 96h to 108h.

In Figure 3.8, we delay treatment by three days. We can see that the system traverses

from effective treatment to ineffective treatment upon changing the IC50 multiplier from

0.04 to a multiplier of 0.06. Here the effects of drug dosing frequency are more pronounced,

with several transitions happening for a single IC50 multiplier. For instance, with an IC50

multiplier of 0.05, the simulated treatment moves from fast clearance to slow clearance to

partial containment as time in-between doses becomes progressively longer.

In the cases of infrequent dosing or mid-high-potency treatments, we observe a situa-

tion in which extracellular virus concentrations fall below the ”cleared” threshold and then

reappear. The viral resurgence happens if infected cells remain and the level of remdesivir

between doses falls to a point where viral replication can restart after the clearance of the

extracellular virus. Even with reappearance, however, levels of the extracellular virus do

not increase beyond the first peak in concentration.

We observe an effect that seems counter-intuitive for simulations with longer inter–dose

periods and intermediate potencies. There is a more significant decrease in extracellular

virus for the first few days of treatment, indicating a (temporarily) more effective treatment

than for the same potency with more frequent dosing. This occurs because the duration

of viral replication is constrained by the duration that the antiviral concentration is above

the effective concentration that inhibits viral replication. This time period is longer for

larger doses. For longer inter–dose intervals the amount per dose is larger (for an inter–

dose interval of n days, the dose D′ is n times the amount of the standard dose (D), i.e.,

D′ = n×D). Thus, the duration of inhibition of viral replication after a dose is longer for

longer inter–dose intervals. The fact that the loading dose, DL, is twice the regular dose;

DL = 2×D′, makes this effect even stronger for the initial inter–dose period. In particular,

it is possible that for a longer dose interval, the drug concentration never decreases below
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the effective concentration between the first and second doses, but decreases below the

effective concentration during the intervals between all subsequent doses.

(a)

(b)

Figure 3.8: Treatment starts three days post the infection of 10 epithelial cells. For all
subfigures the median measurement of simulation replicas is the black line, the 0th to 100th
quantiles are shaded as dark blue, 10th to 90th shaded in orange, and 25th to 75th as
light blue. Rapid clearance plot axis in green, slow clearance plot axis in blue, partial
containment in black, widespread infection in red. 3.8a Uninfected cell population. 3.8b
Extracellular diffusive virus; y-axis in log scale, exponent values as tick-marks.

We show spatial configuration snapshots from replica simulations of the virtual tissue
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patches for the four classes in Figure 3.9.

Figure 3.9: Replica snapshots of the tissue patch are shown for different treatment classi-
fications. In all the cases the top row is the epithelial layer (blue uninfected cells, green
infected cells in eclipse phase, red infected cells releasing virus, black dead cells), middle
row is the extracellular virus concentrations (high concentration in red, low concentration
in blue), and the third row is the immune cell layer (immune cells in red, extracellular
environment in black). A) fast clearance (36h dosing period, 0.01 IC50 multiplier), B)
slow clearance (84h dosing period, 0.05 IC50 multiplier), C) partial containment (84h dos-
ing period, 0.06 IC50 multiplier), D) widespread infection (108h dosing period, 0.07 IC50

multiplier). In all the cases snapshots are shown at the start of the simulation (day 0), at the
start of treatment (3 days post infection of 10 cells), after 14 days of treatment, and at the
end of the simulation (Day 28).

3.3.3.3 Faster clearing drug necessitates more potent antiviral in order to contain the

infection

We evaluated the effects of increased drug clearance on tissue outcomes. Specifically, we

reduced the half-life of GS–443902 by 50% (from 30.4h to 15.2h) (see Figure 3.10 and

Appendix A.6.2), or by 75% (to 7.6h) (see Appendix A.6.3). With the faster clearing drug,

we observe a general effect of shifting the region of effective treatment to greater potencies

(smaller IC50 multiplier); however, there is no similar shift towards more frequent doses
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schedules.

With the half-life of GS–443902 reduced to 15.2h and no delay to treatment initiation,

we classify many more treatments as ineffective than treatments using the regular half-life

and delaying treatment by three days.

Figure 3.10: Extracellular diffusive virus populations for 8 replicas of the treatment simula-
tion. Treatment starts with the infection of 10 cells, the half-life of GS–443902 was halved
(to 15.2h). For all subfigures the median measurement of simulation replicas is the black
line, the 0th to 100th quantiles are shaded as dark blue, 10th to 90th shaded in orange, and
25th to 75th as light blue. Rapid clearance plot axis in green, slow clearance plot axis in
blue, partial containment in black, widespread infection in red.

Initiating treatment later, at one or three days post-infection of ten epithelial cells,

pushed outcomes to widespread infection (see Appendix A.6.2). However, as most treat-

ments are already ineffective with the faster clearing antiviral, few options were pushed to

ineffectiveness.

3.3.3.4 Heterogeneous cellular metabolism of remdesivir results

Now we vary the metabolic rates of the antiviral in each epithelial cell individually, as

detailed in the Methods Section 3.2.4. We see that heterogeneous drug metabolism and

clearance result in an overall worse treatment outcome. We believe this occurs due to
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infection being driven forward by the cells that generate the most extracellular virus; we test

this hypothesis in Results 3.3.3.5. If there is a region of cells with good drug metabolism

(the antiviral is effective) but one among them is insensitive, the infection will progress.

For the heterogeneous cellular metabolism simulations, treatment shifts from effective

to ineffective when we change the IC50 multiplier from 0.03 to 0.05 (Figure 3.11) instead of

0.04 to 0.06 for the homogeneous case (Figure 3.8), both when there is no delay to treatment

initiation and with delay. However, when there is no delay, the 0.05 IC50 multiplier results

in mostly partial containment, and the 0.03 IC50 multiplier guarantees clearance. When we

delay treatment by three days, 0.05 IC50 multiplier results in mostly widespread infections,

and the 0.03 IC50 multiplier is close to the slow clearance – partial containment transition.

Even the best-case scenario, starting treatment with the infection of ten epithelial cells with

heterogeneous metabolism, yields worse outcomes than the worst-case scenario, starting

treatment three days after the infection of 10 epithelial cells, for the homogeneous case.

For the heterogeneous cell response simulations, changing treatment initiation time has

a more pronounced effect than the homogeneous case, see Figure 3.11 and Appendix A.6.4.3.

For instance, when we delay treatment by 1 or 3 days (Figure 3.11b and Appendix A.6.4.3),

most treatments for an IC50 multiplier of 0.3 become almost ineffective (slow clearance)

from most being classified as fast clearance when there is no delay (Figure 3.11a). For

an IC50 multiplier of 0.05, we classify all except one treatment option as partial contain-

ment with no delay (Figure 3.11a). In contrast, we classify most infection dynamics as

widespread infection with a delay of 1 or 3 days (Appendix A.6.4.3, Figure 3.11b).

47



(a)

(b)

Figure 3.11: Extracellular diffusive virus populations for eight replicas of the treatment
simulation. Epithelial cells’ metabolism and clearance varies from cell to cell. For all
subfigures the median measurement of simulation replicas is the black line, the 0th to 100th
quantiles are shaded as dark blue, 10th to 90th shaded in orange, and 25th to 75th as
light blue. Rapid clearance plot axis in green, slow clearance plot axis in blue, partial
containment in black, widespread infection in red. 3.11a Treatment starts with the infection
of 10 cells. 3.11b Treatment starts three days post the infection of 10 cells.
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3.3.3.5 Factors responsible for negative treatment outcomes in the heterogeneous metabolism

model

As cellular heterogeneous metabolic response worsens treatment outcomes, we perform

simulations tracking viral production (viral AUC) by individual cells. We hypothesized

that the infection is driven forwards by the cells that are least sensitive to the antiviral. We

selected four parameter combinations used in Figure 3.11b (i.e., simulations with treatment

delayed by three days), one from each classification, to perform simulations investigating

the viral production by individual cells. The parameter sets chosen are:

• Rapid clearance: 24 hours dose interval, 0.01 IC50 multiplier;

• Slow clearance: 120 hours dose interval, 0.03 IC50 multiplier;

• Partial containment: 96 hours dose interval, 0.06 IC50 multiplier;

• Widespread infection: 24 hours dose interval, 0.1 IC50 multiplier.

In these simulations, we vary either kin (Figure 3.12a) or kout (Figure 3.12b). We

measure the per-cell viral production and see the production–metabolic rate relationship.

If our hypothesis is correct, we would expect with kin increase, the average intra–cellular

concentration of antiviral increases subsequently, and the viral production would decrease.

For kout, we would expect the opposite correlation. With increasing kout, the intra–cellular

viral concentration decreases and viral production will increase.

As before, we run four simulation replicas for each parameter set. We then combine the

replicas’ per cell viral production data, separate the cells into 50 bins of the metabolic rate

range (either kin or kout), and calculate the mean production in each bin.
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Figure 3.12: Mean viral production of cells versus their relative metabolic rates normalized
by the maximum mean production with partial containment parameters. 3.12a Results for
simulations varying only kin, uses the partial containment parameter set. 3.12b Results for
simulations varying only kout, uses the widespread infection parameter set.

Figure 3.12 shows the results for the parameter sets that had the most evident correla-

tion. Namely the partial containment set for kin and widespread infection set for kout. We

see that the hypothesis of super spreader cells is reasonable, as the correlation of metabolic

rates and viral production agrees as we would hypothesized. As kin increases, viral pro-

duction decreases and as kout increases, viral production increases. Outliers are escaping

the trend at the limits of the metabolic rates. Several factors explain these outliers, such

as the time a cell releases virus before dying. On top of that, the distribution of rates is

not uniform but a normal distribution (see Methods 3.2.4). As the number of cells with

either high or low metabolic rates will be low, the mean production of cells with high or

low metabolic rates is more likely to have fluctuations.

The least sensitive cells to the antiviral drive forward the infection and complement

a recent result from Reinharz et al. [60]. They have shown that cellular heterogeneity in

interferon signaling response has the effect of improving tissue outcomes. Antiviral resis-

tance due to interferon depends on the cells that produce the most interferon (effectively

warning other cells of the infection).

For the other parameter sets see Appendix A.7. As there are several sources of hetero-

geneity in the model, the antiviral-metabolic rate vs. viral production correlation can be
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less apparent, which is the case for the results in Appendix A.7. For instance, the correla-

tion is weak if the infection spreads fast (killing virus producing cells early) or is contained

quickly (making the number of infected cells low). Weak correlation can also arise from

the infected cells dying before or shortly after releasing the virus to the environment.

3.3.3.6 Effects of variability in cellular drug metabolism on treatment outcomes

To quantify the effects of variability in cellular drug metabolism on treatment outcome,

we simulated tissues with different levels of variability. This was done by changing the

modulation parameter of the metabolic rates, kin and kout in Equations 3.4 and 3.6. For

the results so far, in Equations 3.4 and 3.6 we modulated the metabolic rates by drawing a

random number from a Gaussian distribution with mean (µ) set to 0 and standard deviation

(ξ) set to 0.25. Here we perform simulations with ξ = 0.1 (see Figure 3.13a) and ξ = 0.5

(see Figure 3.13b). With a ξ = 0.1 most treatment outcomes that are classified as rapid

or slow clearances in the homogeneous case remain effective. In contrast, with a ξ =

0.5, almost all treatments are ineffective. We map the boundary of effective-ineffective

treatments (Figure 3.14) by plotting the centers of simulations classified as slow clearance.

We observe that the boundary moves towards lower IC50 multipliers (i.e., more potent

drugs would be needed). We also saw that the increase of metabolic variability made the

boundary less dependent on the dosing interval. Other metrics for these simulations can

be found in Appendix A.6.5. In summary, with a lower variability of cell metabolism,

treatment outcomes were closer to those of uniform cell metabolism; whereas, with a higher

variability most treatments became ineffective.
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(a)

(b)

Figure 3.13: Extracellular diffusive virus populations for eight replicas of the treatment
simulation. Epithelial cells’ metabolism and clearance varies from cell to cell. For all sub-
figures the median measurement of simulation replicas is the black line, the 0th to 100th
quantiles are shaded as dark blue, 10th to 90th shaded in orange, and 25th to 75th as light
blue. Rapid clearance plot axis in green, slow clearance plot axis in blue, partial contain-
ment in black, widespread infection in red. 3.13a Cells’ metabolism standard deviation set
to 0.1. 3.13b Cells’ metabolism standard deviation set to 0.5.
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Figure 3.14: Ineffective-effective treatment transition border for different levels of
metabolic variability. In blue is the homogeneous metabolism case, in black the heteroge-
neous metabolism case applying a modulation by a Gaussian random number with standard
deviation (S.D.) set to 0.1 for kin and kout, in red the heterogeneous case with the Gaussian
random number S.D. set to 0.25, in green with the S.D. set to 0.5.

To appreciate the effects of cellular metabolic heterogeneity on treatment outcome, we

compare intra–cellular viral RNA levels in untreated cases to the same with treatment at

different levels of heterogeneity (i.e. different ξ). Quantifying intra–cellular RNA is not

straightforward, as the time of infection of different cells varies, and the total number of

infected cells at a given time also varies. Therefore, we consider how to aggregate cells

and measure intra–cellular RNA. We opt to measure the viral RNA levels only for infected

cells that release virus to the extra cellular environment (i.e., that have exited the eclipse

phase of infection), as they are further along in the disease progression and will have the

highest intra–cellular RNA levels. It is also important to note that growth of RNA level in

cells under ineffective or no–treatment is exponential, therefore mean RNA levels can be

dominated by a small number of cells until they perish due to viral production stress. We

see such cases as spikes in RNA levels followed by a rapid decay in Figure 3.15.

For the intra–cellular RNA level comparison we have one set of simulations with no

treatment at all, and for the treated simulations we choose a set of treatment parameters

that yielded results classified as rapid clearance when there is no metabolic heterogeneity,
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as slow clearance with the metabolic heterogeneity ξ set to 0.1, as partial containment with

ξ = 0.25, and as widespread infection with ξ = 0.5. Chosen treatment parameters are:

delay treatment for one day, dose every 24h, IC50 multiplier of 0.05.

In Figure 3.15, we show the mean and standard deviation of RNA levels in virus-

producing cells for 5 sets of simulations with the simulation replicas of each set plotted

individually, both for the untreated case (see Figure 3.15a) and with treatment (see Fig-

ures 3.15b, 3.15c, 3.15d, and 3.15e). We want to point out that the scales of Figure 3.15’s

subfigures are not the same, so that the change in RNA level can be seen for all cases.
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(a)

(b) (c)

(d) (e)

Figure 3.15: Mean RNA levels in virus-releasing infected cells (solid lines) with standard
deviation (shaded regions) versus time for individual simulation replicates under differ-
ent simulation options. Sub-figure 3.15a is untreated. Sub-figure 3.15b is treated with
no metabolic heterogeneity, 3.15c is treated with a metabolism standard deviation of 0.1,
3.15d is treated with a metabolism standard deviation of 0.25, and 3.15e is treated with a
metabolism standard deviation of 0.5. Please note that the y-range in 3.15a and 3.15b differ
from the others.
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Without any treatment, mean RNA levels in virus-producing cells stay stable at a level

of 12 arbitrary units until the end of the simulation, when RNA levels in the few surviving

epithelial cells shoot up. Before that time there are cells with high levels of internal viral

RNA but the mean level is brought down by cells that are earlier in the infection stage.

With treatment and no inter–cellular metabolic heterogeneity the intra–cellular RNA levels

in virus-producing cells stay low, below 2 A.U., for the entire treatment duration and RNA

levels among cells are similar (low standard deviation). We also see that as treatment

progresses the mean RNA levels steadily decrease, and we see a periodic effect from the

dosing interval. This is to be expected when treatment is effective and all cells respond to

treatment identically (see Figure 3.15b). As we increase metabolic heterogeneity (ξ) the

mean intra–cellular RNA levels also increase as does the variation of intra–cellular RNA

levels among cells. We also start to see spikes in the mean intra–cellular RNA levels related

to cells that do not control viral replication internally (one spike for ξ = 0.1, several for

ξ > 0.1), where in those cells the RNA growth is exponential. As soon as those cells die

the mean intra–cellular RNA drops back down to a steady level. When we use ξ = 0.5 in

Equations 3.4 and 3.6 the RNA levels oscillate in a similar range to that of the untreated

case. In Appendix A.6.5.3 we show how changing the metabolic heterogeneity affects the

average and distribution of intra–cellular drug levels in these simulations. In short, when

ξ = 0.1 intra–cellular drug levels stay close to the homogeneous metabolism case. With

ξ = 0.25 intra–cellular drug concentrations are more spread–out, and with some cells at

levels that are double or half the mean. With ξ = 0.5 there are cells with 0 intra–cellular

drug concentration and cells with intra–cellular concentrations as much as 3 times greater

than the mean.

3.4 Discussion

Our model of antiviral treatment of COVID-19 integrates a spatio-temporal model of an

infected lung tissue patch with remdesivir PK and PD models. This approach allows us to
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probe the distribution, dynamics, and effects of remdesivir within a hypothetical patholog-

ical tissue structure.

This work is part of a collaborative effort. The modeling framework is extendable and

modular. Models of other viruses and therapies can replace our viral model and PK-PD

models.

Computational methods are a necessary complement to experimental efforts moving

forward in the fight against COVID-19, future pandemics and current diseases. The com-

bined complexities of the pathogen, disease pathology, immune response (both innate and

adaptive), antiviral dynamics, and host variation, including variation in the basics units of

the body, make it virtually impossible to disentangle the numerous driving forces behind

infection outcomes using only animal and human data. Furthermore, experimental data

are often sparse, and computational models can expand the explanatory power of limited

experimental data. Our modular approach captures and integrates these dynamics to help

translate biomedical mechanisms to clinical relevance.

We characterize the infection and treatment dynamics of an epithelial patch infected by

SARS-CoV-2 and treated with remdesivir, at dose regimens encompassing those approved

clinically. To create our model, we used reported human pharmacokinetics of remdesivir

and its active metabolite and physiologically relevant within-host viral dynamics. We have

considered the PK model profile of remdesivir to calculate the concentration of the drug

in each cell, while assuming, at first, that the availability of drug to each cell is equal

(well–mixed conditions). The lung tissue concentration of all of the remdesivir metabolites

are not evident in any reported biomedical study, therefore we estimated them from their

plasma concentrations using pharmacokinetic models [23, 51, 61].

We simulate multiple regimens for antiviral therapy on top of our extendable frame-

work. We aimed to explore if the unconvincing results of antiviral trials and their clinical

use could be explained by exploring the effects of changes in drug potency and schedule

and some unknown possibilities. We found that the same dosing regimen and the same
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parameter set different replicas can have different outcomes. Furthermore, we found that if

the cellular metabolism of the antiviral changes from cell-to-cell, simulation outcomes are

more dispersed, and the effective antiviral dose is greater. Altogether that means that two

identical patients receiving the same identical treatment could have different outcomes. We

believe this explains some of the ambiguity of the clinical trials.

The spatial model enables exploration of the effects of inter–cellular heterogeneous re-

sponse to the antiviral, even with a lack of experimental data on how different cells of the

same tissue may react and metabolize drug compounds differently. Therefore, we perform

simulated experiments to investigate how that variation in metabolism may affect treatment

outcomes. Our model predicts that cells that are less sensitive to the drug drive the infec-

tion, necessitating higher antiviral doses or the need for a more potent antiviral activity

(by > 50% depending on level of heterogeneity and treatment delay) (see Results 3.3.3.2,

3.3.3.4, and 3.3.3.6). Therefore, experimental studies that investigate what are the typical

metabolic variations in a tissue would enable the development of models that fit even better

with reality. A pure population model of infection would not predict that cellular hetero-

geneity increases the antiviral potency needed for effective control of the infection, as they

cannot model inter–cellular heterogeneity in space.

As expected, the model predicted that remdesivir exposure, both to adequate doses of

antiviral and in the amount of time with adequate levels, is a crucial determinant of treat-

ment outcome, implying that increased dose amount would improve treatment outcome.

We show that suboptimal exposure to the simulated antiviral inside simulated infected ep-

ithelial tissues leads to regrowth of viral load between doses and may contribute to persis-

tent COVID-19. This result aligns with the reported experiments in non-human primate,

rhesus macaques [30–32].

However, we do not model drug-induced toxicity, which is a concern at high doses and

limits the clinically safe dose. We also predicted the continued significance of host mech-

anisms during treatment, such as metabolic clearance of the antiviral (see Results 3.3.3.5).
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Identification and ranking of these host mechanisms identifies potential targets for therapy

development [62, 63]. Potential strategies include treatment utilizing a neutralizing anti-

body cocktail or convalescent plasma to boost host immunity or fast viral clearance. Here,

we want to comment that the present study is a mathematical and mechanistic exploration of

possible scenarios. The present model simulates a tiny patch of epithelial tissue and cannot

predict clinical outcomes at the whole-body level. The present model lacks a well-defined

immune response that allows natural clearance of the virus. The antibody-mediated viral

neutralization and antibody-dependent cellular cytotoxicity is not considered in the present

model, hence the second, rapid clearance phase is not observed in the viraemic loads of

our simulations. We also recognize that the present set of simulations aggregate rather than

explore, the different sources of heterogeneity and variability. Future work should explore

the sources of heterogeneity, incorporate the antibody therapies with an improved, well-

defined immune response model, as well as of tissue recovery. In turn, improved immune

response modeling will help us determine the cross-talk between antibody cocktails with

the host immune response while reducing the viral burden. Because of these results, we

believe that researchers must consider host mechanisms, viral load, and drug permeabil-

ity as part of the design space combining immuno-modulation and antiviral treatment of

COVID-19 and other viral diseases.

The main finding of this paper is the effects of heterogeneity in cellular metabolism

(uptake and clearance) on viral replication. Even in the presence of spatial stochasticity,

identical cellular behavior predicted better outcomes for the antiviral treatment. In contrast,

including cellular heterogeneity worsened the treatment outcomes and produced results that

are more similar to previous clinical trial outcomes than the homogeneous setup [64]. This

discrepancy of model prediction and clinical trials may be a limitation of traditional phar-

macometrics models that utilize the well-stirred assumption. As employed in this study,

incorporating tissue heterogeneity may be important to improve the clinical trial simula-

tion.
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Clinical trials of antivirals for COVID-19 remain fraught with limitations, including

the inability to test drugs singularly or in combinations, high cost, and the long duration

of clinical trials. The most significant limitation of antiviral trials as treatment is that an-

tivirals need to be given early in infection, which is a challenging issue for SARS-CoV-2,

where there is an appreciable delay between infection and symptom onset. Animal models

play an essential role in identifying new and effective regimens, but these studies are also

time-consuming and costly, and they require models with human-like pathology. Here we

provide a complementary systems pharmacology tool for predicting the efficacy of new

drugs and regimens, allowing a rapid assessment of drug efficacy at the site of viral infec-

tion while considering cellular heterogeneity.
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CHAPTER 4

TRANSLATING MODEL SPECIFICATIONS

4.1 Introduction

We build biological models to describe and investigate biological systems. Our models

need to follow the scientific method, where we start from an observation about a natural

phenomenon or problem, formulate a clear and specific question, create a tentative and

testable hypothesis, make a prediction, and perform experiments (in our case, our experi-

ment is in silico, i.e., the model itself) to test the hypothesis. After doing the experiments

we can analyse the results, compare them with wet-lab experiments (if they exist), come to

a conclusion, suggest new wet-lab experiments, and publish our model and results.

After publication, it would be ideal if the model is reproduced using another method,

after all, the modeler’s choice of which platform and method to use in their investigation,

if we assume the model is build correctly, should not change the results from the model.

In fact, one way to check the validity of a model is to re-implement it on a platform that

utilizes a different method to represent biology. Replication and reproduction are one of

the most important parts of the scientific method, they guaranty the falsifiability of the

experiment and hypothesis.

Do multicellular tissue agent-based models (ABMs) follow the scientific method fully?

Science and computational models should be: findable, accessible, interoperable, and

reusable (fair) [65]. Tissue ABMs usually follow the first two criteria, but do not follow

the later two. E.g., a PhysiCell [11] model cannot be reused in CompuCell3D [10]. This

is a result of the fact that, currently, there’s no easy and unified method to use a biological

agent-based models (ABMs) developed for one platform in another.

The lack of interoperability and reusability slows down research and inhibits collab-
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oration, and causes a crisis of reproducibility. Theses issues could be mitigated by re-

implementing a model by hand. However, re-implementing a model is a time intensive task

that requires deep knowledge of the model and both platforms, therefore, it is rarely done.

How can we change that?

Developing automated, standardized, methods to use ABMs in multiple platforms would

make re-using and validating such models cross-platform trivial. There are two ways such

cross-platforms methods could work: a new universal specification standard, or model

translators. The advantages of the new standard are that there is a clean slate for its devel-

opment and definitions, it can be designed to be expressive, consistent and efficient, it is

independent of target platforms, new platforms can adapt themselves to it, only one needs

to be developed. The disadvantages are that it must be developed from scratch (there are

no pre-built representations of cells, dynamics, etc.), until a platform adopts the standard it

doesn’t have a purpose, there’s no pre-existing constituency of models built for it, and there

are many unknowns regarding it. The advantages of translating are that it immediately has

utility, and there are existing models that can be used with the translator, a target commu-

nity for the translator exists. The disadvantages are that one new translator has to be made

for each pair of modeling platforms, the translator has to deal with the idiosyncrasies of

each platform.

To develop the translators or the universal specification several challenges need to be

overcome. Some, such as how to implement universal concepts, how to deal with different

scales and number of agents the platforms can simulate at once, what to do about concepts

that existing only in some platforms, are common to both methods. As the universal ABM

specification is more general, it will probably face more challenges and require more exten-

sive development. To explore some of the challenges such an endeavor will encounter I’ve

developed a translator, which is more straightforward to accomplish than a universal model

specification for ABMs, to go from a PhysiCell [11] simulation to a CompuCell3D [10]

simulation.
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The rationale behind choosing PhysiCell and CompuCell3D is threefold: first, as men-

tioned, it allows for early identification and assessment of the challenges associated with

developing a future standard specification; second, the cell representation and dynamics

in these platforms differs greatly, making their combination a good target to uncover dif-

ficulties that would stay hidden with the translation of more similar models; third, the

PhysiCell model specification is mostly done in a single XML file (as of version 1.10.4),

while the CompuCell3D model specification requires distribution across three files. Com-

puCell3D simulations use one XML file that is responsible for the initial configuration of

the simulation (simulation size, initial conditions, initial placement of cells, model compo-

nent inclusion – e.g., chemotaxis), one Python file containing the custom user-defined code

that should be executed each time-step (which can be separated into several ”Steppable”

classes), and finally a second Python file that registers the steppables classes.
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(a)

(b)

Figure 4.1: Example GUI of a running simulation in: 4.1a) PhysiCell and 4.1b) Compu-
Cell3D. Both figures show the a simulation that was translated using the methods described
here: biorobots, see Section 4.7.2.

4.2 Conceptual model differences between CompuCell3D and PhysiCell models

PhysiCell and CompuCell3D have been widely utilized in the field of computational bi-

ology, each with their own distinct strengths and limitations. One fundamental difference

between these frameworks lies in their representation of the simulated domain and cells.

CompuCell3D’s models are Cellular Potts Models (CPM) [7, 37], a lattice-based approach

where the dynamics of the simulation are driven by energy minimization [7, 10], while

PhysiCell uses an off-lattice approach where the dynamics are driven by forces [11]. More-

over, in CompuCell3D, cells are represented as collections of pixels or voxels in a lattice

structure, whereas in PhysiCell, cells are represented as spheres with varying radii. Ta-

ble 4.1 shows a few conceptual differences of CompuCell3D and PhysiCell.
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This difference in representation has implications for the volume of simulation and

the ability to represent complex structures. CompuCell3D simulations typically represent

smaller volumes and fewer cells compared to PhysiCell simulations. However, Compu-

Cell3D is capable of representing arbitrary shapes and complex structures that cells may

form, such as renal tubules [66]. In contrast, due to the use of spherical cells in PhysiCell,

representing arbitrary shapes and complex structures is more challenging.

The specification of simulations also differs significantly between the two frameworks.

As mentioned, in PhysiCell most of the model definition happens in a single XML file

(as of version 1.10.4). PhysiCell’s XML file specification is comprehensive and allows in

depth customization of model components and cell behavior. However, further model cus-

tomization in PhysiCell is harder, as it requires C++ programming and lacks some helper

functions for repetitive tasks. On the other hand, CompuCell3D simulations are expected

to be customized using Python, and while the XML options may be less comprehensive,

the framework offers greater flexibility. Both platforms have model-creation wizards that

aid in model generation.

Both PhysiCell and CompuCell3D support modeling diffusing field, which can repre-

sent chemical species, virus concentrations, and other concentrations. However, the dif-

fusion solver in PhysiCell is more advanced and faster compared to CompuCell3D. Com-

puCell3D uses a forward Euler solver [10], while PhysiCell uses BioFVM [11, 67]. Cells

in both frameworks can interact with diffusing fields in various ways, including uptake or

secretion, chemotaxis, and using the concentration as a control for cell behaviors.

One notable feature of PhysiCell is its integrated module for cell behavior simulations

and changes in behaviors, known as phenotypes. They can represent the cell cycle, stages

of cell death, a latent/active state of bacteria, etc., see Chapter 5 for more information

on phenotypes. This module is comprehensive and sophisticated, providing extensive ca-

pabilities for modeling cell behaviors in response to the microenvironment. In contrast,

CompuCell3D lacks a built-in cell behavior model of this complexity and modelers are ex-
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pected to create their own. The phenotype submodel in PhysiCell is complex to the point

of requiring a separate project to re-implement it in a form that CompuCell3D can use.

Such an elegant representation of cell behaviors should not be restricted to one or two

modeling platforms. It can be used in, and would strengthen, any bio-ABM. Therefore,

I turned my Python implementation of PhysiCell’s phenotypes into a stand-alone Python

package called PhenoCellPy. PhenoCellPy is discussed in detail in Chapter 5 and in a

separate publication [13].

Concept CompuCell3D PhysiCell

Cell shape Fundamental, complex Derived, simple

Cell shape anisotropy Fundamental Missing

Cell center of mass Derived Fundamental

Cell velocity Derived Fundamental

Basic cell behavior Fundamental Fundamental

Complex cell behavior User-defined only Fundamental/user-defined

Cell types Fundamental Fundamental

Movement bias Derived Fundamental

Cell compartments Fundamental Missing

Table 4.1: Comparison of selected concepts from CompuCell3D and PhysiCell

4.3 An Overview of the Dynamics of CompuCell3D and PhysiCell

Both platforms are physics simulators that aim to reproduce multicellular dynamics, in

particular cell movement and rearrangement. In this section I’ll give an overview of the

strategies they employ to achieve this. In particular, it is important to note that drag forces

are dominant in the cellular environment [11], this results in inertialess movement [11], i.e.,
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v⃗ ∝ F⃗ . (4.1)

It is important to note that the drag in CompuCell3D is relative to the lattice itself, and

that in PhysiCell the forces act on the velocity of the cell. Therefore, both platforms have

drag against a fixed, universal, inertial frame (instead of, e.g., against a moving fluid). This

makes rigid body movement hard in both. Both platforms having a common assumption

about drag, on the other hand, make the translation process of this aspect straightforward.

4.3.1 Dynamics in CompuCell3D

CompuCell3D is an implementation of the the Cellular Potts Model (CPM) [7, 68], also

known as Graner-Glazier–Hogeweg (GGH) model. CPM is an modification of the Potts

model [7, 69]. CPM was created to simulate multi-cellular biological systems [7]. In CPM

energy minimization governs the dynamics of the system. François Graner and James

Glazier developed the first iteration of Cellular Potts to test the hypothesis of cell sorting

by differential adhesion [7]. Hogeweg later expanded on CPM by adding a diffusion model

to CPM [68].

Graner and Glazier defined that cells are made of pixels with the same ”cell-ID,” not

unlike cell in a microscopy picture are made of pixels. This means that no two cells can

have the same ID, denoted by σ. In other words, regions with the same cell-ID represent

a cell. In CPM cells can be of different types, and the contact energy between cells will

depend on both types. This allowed Graner and Glazier to probe the differential adhesion

hypothesis [7]. More energy terms are needed to fully describe cell behavior and morphol-

ogy, such as an energy related to the cell volume, to chemotaxis, to cellular elongation

(cells in CPM tend to be round due to surface energy minimization), directed movement,

etc. The simplest Hamiltonian for CPM is the one defined in [7], it is
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HCPM =
∑
i

∑
{j}i

J(τ(σi), τ(σj))(1− δ(σi, σj)) +
∑
σ

λV (σ) (V (σ)− VTG(σ))
2 . (4.2)

The first term is the contact energy and the second the volume energy. σ represent a cell (by

referencing its ID), τ(σ) is the type of cell σ, J(τ(σi), τ(σj)) is the (type-pair dependent)

contact energy between two cells, the contact energy is symmetric, i.e., J(τ, τ ′) = J(τ ′, τ).

V (σ) is the current volume of cell σ (in pixels), VTG(σ) is the target volume of cell σ, and

λV (σ) is the volume energy intensity for cell σ.

The double sum of the contact energy is made over a pixel i and the set of pixels inside a

range, {j}i. {j}i are the pixel-neighbors of i. This neighborhood is a Von Neumann neigh-

borhood with a set order defined by the user [10]. Figure 4.2 shows how this neighborhood

changes based on the range. It should be noted that using a low order neighborhood causes

cells to pin to the lattice, i.e., they become square and their borders are paralel to the car-

dinal directions of the lattice [70]. δ(a, b) is the Kronecker delta function, if a = b then

δ(a, b) = 1 otherwise it is 0. The Kronecker delta function here guaranties that a cell will

not have a contact energy with itself. The volume energy is the harmonic potential, if a cell

is above or below its target volume there will be an energy penalty to the system and the

cell will tent to change its volume to be closer to the target. The sum for the target volume

is made over all cells.
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(a) (b)

(c) (d)

Figure 4.2: Pixel neighborhoods for each order, main pixel in red, neighborhood in blue.
4.2a) 1st order, 4.2b) 2nd order, 4.2c) 3rd order, 4.2d) 4th order.

4.3.1.1 Chemotaxis in CPM

Chemotaxis is a fundamental cell behavior that both CompuCell3D and PhysiCell represent

and have available. Chemotaxis in CompuCell3D is implemented through an energy term

in the Hamiltonian. In its most common form, this term is:

Hchemotaxis = −
∑
k

λck(σ)
(
ck(j)− c(i)

)
. (4.3)
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Where k is the index of the field the cell is chemotaxing on, j is the pixel the cell (σ) is

moving towards and i the pixel it is moving from, ck field k’s value, λck the chemotaxing

strength to that field. With a positive λck cell σ will chemotax to higher values of ck and

with a negative λck towards lower levels of ck. If the cell doesn’t chemotax then all λck are

0. See Section 4.3.2.1 for an explanation of how PhysiCell implements chemotaxis.

4.3.1.2 Temporal dynamics of Cellular Potts Model

Solving the equations for CPM analytically is impossible. Exploring all energy (i.e., pixel)

configurations numerically is also not doable before the heat death of the universe. The

CPM algorithm chooses one pixel at random (i), then it chooses a second pixel (j) from

the Von Neumann neighbors of i, it proposes that the cell that occupies i also occupies j

(it proposes a pixel-ownership change), it checks what is the system’s energy change due

to this pixel-ownership change, and accepts or rejects the change. This has three important

consequences: one as the change in energy has a direction, the model is changed from an

energy formalism to a force formalism; two, updates only happen at cell borders; three,

there’s no detailed balance, the dynamics are not reversible (e.g., if a cell disappears it

can’t re-appear). These dynamics correspond to biological reality, but they mean that this

algorithm (a modified Metropolis algorithm [7, 37]) can’t solve the equilibrium statistical

mechanics that the original Metropolis algorithm was designed to solve [71, 72]. It should

be noted that the background (i.e., medium) cannot appear in between cells, and that the

Von Neuman neighborhood order of the algorithm doesn’t have to be the same as the one

used by the contact energy.

The steps of the modified Metropolis algorithm used in CPM are [10]:

1. Pick a random pixel from the grid (i)

2. Pick another random pixel (j) from i’s neighbors

3. If i and j don’t belong to the same cell, attempt a pixel ownership change (i.e., that
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the cell that occupies imoves to occupy j). Think as the cell that occupies i is moving

and pushing towards the cell that occupies j.

4. Calculate the change of the system’s energy due to the cell movement

∆H = H(with movement)−H(without movement) (4.4)

5. ∆H then defines a probability of accepting the move or not. It is

Pr(accept move) =


1, if ∆H ≤ 0

exp
(
−∆H

T

)
, otherwise

(4.5)

This process is usually called a flip-copy attempt, I call it a move-attempt. In CPM,

for a grid with N pixels, one time-step is defined as N move-attempts. The usual name,

for historical reasons, for the time-step in CPM is ”Monte Carlo Step” (MCS). T in equa-

tion 4.5 is, also for historical reasons, called temperature. However, it has nothing to do

with a temperature one would measure with a thermometer, it sets fluctuation amplitude of

the cells’ borders. T scales all the energies of the system, and can be set by the user. The

CPM dynamics algorithm leads to a dampened movement in accordance with the equation

of movement shown in Equation 4.1.

4.3.2 Dynamics in PhysiCell

PhysiCell is a center-based modelling (CBM) framework. In CBMs cells are represented

as a particle [73] or a group of particles [74], the particle is, usually, spherical. PhysiCell

uses different time-steps for calculating the solution of diffusing elements in the simulation,

for calculating the cell mechanics, and for performing cell behaviors, ∆tdiff , ∆tmech, and

∆tcells respectively. By default their values are ∆tdiff = 0.01min, ∆tmech = 0.1min, and

∆tcells = 6min.
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Unlike CPM, in center based models, forces are modeled explicitly, special consid-

eration must be taken to respect the dominance of drag-forces. PhysiCell does this by

modeling the force as acting on the cell’s velocity, not on its acceleration.

4.3.2.1 Velocity in PhysiCell

PhysiCell updates each cell velocity (v⃗(σ)) according to the force applied to the cell, obey-

ing Equation 4.1. The cell velocity update, in PhysiCell , occurs according to the following

algorithm:

v⃗(σ) =
∑

σ′∈N (σ)

[
−A⃗(σ, σ′)− R⃗(σ, σ′)

]
− A⃗B(σ)− R⃗B(σ) + v⃗mot(σ) , (4.6a)

A⃗(σ, σ′) =
√
ca(σ) ca(σ′) ∇ϕ(∆x⃗(σ, σ′), RA(σ) +RA(σ

′)) , (4.6b)

R⃗(σ, σ′) =
√
cr(σ) cr(σ′) ∇ψ(∆x⃗(σ, σ′), RR(σ) +RR(σ

′)) , (4.6c)

A⃗B(σ) = ca,b(σ) ∇ϕ(−d⃗(x(σ)), RA(σ)) , (4.6d)

R⃗B(σ) = cr,b(σ) ∇ψ(−d⃗(x(σ)), RR(σ)) . (4.6e)

Where σ is the cell, σ′ ∈ N (σ) the cell neighbors of σ, A⃗(σ, σ′) is the adhesion force

between cells σ and σ′, R⃗(σ, σ′) the repulsion between cells σ and σ′, A⃗B(σ) the adhe-

sion of cell σ to the basement membrane, R⃗B(σ) the repulsion of cell σ to the basement

membrane, and v⃗mot(σ) is the cell motility velocity (i.e., persistent cell motion) [11]. ca(σ)

and ca,b(σ) are, respectively, the cell’s cell-cell and cell-basement adhesion parameters,

cr(σ) and cr,b(σ) are, respectively, the cell’s cell-cell and cell-basement repulsion parame-

72



ters [11]. ∆x⃗(σ, σ′) is the distance of cell σ to cell σ′ (i.e., ∆x⃗(σ, σ′) = x⃗(σ)− x⃗(σ′)), and

d⃗(x(σ)) the distance from the closest point of the basement membrane to the cell [11].

ϕ(x⃗, R) is the adhesion energy potential, and ψ(x⃗, R) the repulsion energy potential.

The form of ∇ϕ(x⃗, R) and ∇ψ(x⃗, R) are given in PhysiCell’s supplemental materials [11],

they are, respectively:

∇ϕ(x⃗, R) =


(
1− |x⃗|

R

)
x⃗
|x⃗| , if |x⃗| ≤ R

0 , otherwise
, (4.7)

and,

∇ψ(x⃗, R) =


−
(
1− |x⃗|

R

)
x⃗
|x⃗| , if |x⃗| ≤ R

0 , otherwise
. (4.8)

Finally, v⃗mot(σ) is cell σ’s motility. Motility, in PhysiCell, is the persistent motion of

the cell [11], it can be biased along an arbitrary direction or, more commonly, a chemical

field, chemotaxis in PhysiCell is implemented through v⃗mot(σ). At each (mechanics) time-

step a cell in PhysiCell has a probability of changing the motility direction given by

Pr(new v⃗mot(σ)) = ∆tmech/τper(σ) . (4.9)

Where τper is the persistence time [11]. If a velocity update occurs, it will follow

v⃗mot(σ) = smot(σ)
(1− b) ξ̂ + bd⃗bias(σ)

| (1− b) ξ̂ + bd⃗bias(σ)|
. (4.10)

With smot(σ) the cell speed, ξ̂ a random unit vector, d⃗bias(σ) the bias direction vector, and

b the motility randomness amount [11]. The b factor is ∈ [0, 1], b = 1 represents a com-

pletely deterministic motility direction along d⃗bias and b = 0 Brownian motion. d⃗bias(σ) is

determined by the cell state, chemical field interactions, or user-defined factors. If the cell
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is chemotaxing then |d⃗bias(σ)| > 0, and the value of d⃗bias(σ) is given by:

d⃗bias(σ) =
M∑
j=0

λj∇cj . (4.11)

Where j is the index of a chemical field, ∇cj the gradient of the field at the cell’s position,

and λj the chemotatic sensitivity to that field. If λj > 0 then the cell will chemotax towards

higher values of cj , if λj < 0 it will chemotax towards lower values of cj . The user may

opt to use a form of chemotaxis that normalizes the chemical gradient, that case ∇cj is

replaced by ∇cj/|∇cj| in Equation 4.11 [11]. If the cell doesn’t chemotax then all λj = 0.

4.4 Implementation of the Translation Process

The PhysiCell to CompuCell3D translator works by first transforming PhysiCell’s XML

file into a Python dictionary using a Python package called ”xmltodict” (https://pypi

.org/project/xmltodict/). Then several functions and methods are used to parse

and re-implement the available information in a CompuCell3D compliant way. After the

simulation is reinterpreted the new CompuCell3D files are placed in a folder respecting the

file structure CompuCell3D expects.

4.4.1 Translating Space

1 <overall>

2 <max_time units="min">30240</max_time>

3 <time_units>min</time_units>

4 <space_units>micron</space_units>

5 <dt_diffusion units="min">0.01</dt_diffusion>

6 <dt_mechanics units="min">0.1</dt_mechanics>

7 <dt_phenotype units="min">6</dt_phenotype>

8 </overall>

Listing 1: Example PhysiCell XML defining the time and space units and time discretiza-
tion constants

74

https://pypi.org/project/xmltodict/
https://pypi.org/project/xmltodict/


1 <domain>

2 <x_min>-750</x_min>

3 <x_max>750</x_max>

4 <y_min>-750</y_min>

5 <y_max>750</y_max>

6 <z_min>-750</z_min>

7 <z_max>750</z_max>

8 <dx>20</dx>

9 <dy>20</dy>

10 <dz>20</dz>

11 <use_2D>false</use_2D>

12 </domain>

Listing 2: Example PhysiCell XML defining the simulated domain and space discretization
constants

The first information to be extracted is the space domain size, if the simulation is 3D

or 2D, and which length unit PhysiCell has set for length (micrometer, nanometer, etc).

Listing 1 and 2 show example PhysiCell XML for defining the domain space and units

respectively. It should be noted that the position of the origin within the simulation domain

differs in both platforms. Specifically, PhysiCell’s origin is located at the center of the do-

main and, as a result, has negative coordinates, while CompuCell3D’s origin is positioned

at a corner of the simulated domain and only has positive coordinates.

Despite being an off-lattice model, PhysiCell adopts a space discretization constant that

must also be extracted. This value, along with the simulation size, is used to determine the

number of pixels in the CompuCell3D simulation. Specifically, the size of each side of the

CompuCell3D simulation (i.e., x, y, and z) is calculated using the following formula:

∆Xcc3d
i =

∆Xpsc
i

δXpsc
. (4.12)

Here, ∆Xcc3d
i represents the size (in pixels) of the i-th side of the CompuCell3D simula-

tion, ∆Xpsc
i indicates the size (in the corresponding units) of the i-th side of the PhysiCell

simulation, and δXpsc denotes the discretization of space in PhysiCell. If the PhysiCell
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simulation is 2D the translator will set the z dimension in CompuCell3D to be 1 pixel wide

(the standard method of implementing 2D simulations in CompuCell3D). As δXpsc dis-

cretizes space, it must have units of [space-unit/discrete-unit]. To ensure consistency with

the length units used in PhysiCell, the translator defines the pixel unit in CompuCell3D as:

CC3D-space-unit =
∆Xcc3d

x

∆Xpsc
x

→
[

pixel
space-unit

]
, (4.13a)

∆Xcc3d
x

∆Xpsc
x

= 1/δXpsc , (4.13b)

1 pixel = space-unit/δXpsc . (4.13c)

Appendix B.1 shows the Python function that does this process.

In CompuCell3D, a cell is represented by a group of multiple pixels, which imposes

a minimum size of 1 pixel for the cell. However, it is worth noting that small cells in

CompuCell3D have a tendency to fragment or completely disappear from the simulation

due to their small size and energy minimization, thereby necessitating a practical minimum

volume for CompuCell3D cells greater than a single pixel. Unfortunately, when converting

space from PhysiCell to CompuCell3D using the methods described by Equation 4.12 and

Appendix B.1, cell volumes tend to be < 1 pixel.

To respect the minimum practical size, the translator stretches the dimensions for Com-

puCell3D if any cell is below a minimum pixel volume (set to 8 pixels as default). This

stretching process is described in Section 4.5.1.

4.4.2 Translating Time

Next, the translator extracts information about time. What are the time units used (seconds,

minutes, hours, etc), how long the simulation should run for, and what is the discretization

of time (dt). As seen in Listing 1, PhysiCell actually has three dts defined, one for the
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diffusion solver, one for the mechanics solver, and one for the phenotype solver. PhysiCell

uses this method to optimize simulation run time [11] by only calling each solver when it

is needed.

CompuCell3D only has one time-step, the Monte-Carlo Step (MCS), which is always

set to 1 [10]. To deal with diffusion instabilities, CompuCell3D sub-steps the diffusion

solvers depending on the diffusion constants set. As CompuCell3D doesn’t have the phe-

notype models it doesn’t need a phenotype time-step. My PhenoCellPy [13] package (see

Chapter 5) uses SciPy’s ODE solvers [75] to deal with instabilities. Considering that the

time-step in CompuCell3D is only equivalent to the mechanics time-step in PhysiCell, the

translator only extracts it.

We want both simulations to represent the same amount of time. As dt is fixed to 1 in

CompuCell3D, the number of steps the converted CompuCell3D simulation will have is:

∆τ cc3d = ∆τ psc/dtpscmech . (4.14)

Where ∆τ cc3d is the total of time-steps in CompuCell3D, ∆τ psc is the total amount of time

(not time-steps) from the PhysiCell simulation, and dtpscmech the mechanical time-step in

PhysiCell. The translator defines the time-step units in CompuCell3D (MCS’s units) as:

CC3D-time-unit =
∆τ cc3d

∆τ psc
→
[

MCS
time-unit

]
, (4.15a)

∆τ cc3d

∆τ psc
= 1/dtpscmech , (4.15b)

1MCS = time-unit/dtpscmech (4.15c)

Appendix B.2 shows the Python function that does this process.

This conversion leads to very high diffusion constants, which slows down Compu-
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Cell3D’s diffusion solvers a lot (CompuCell3D’s diffusion solvers are not as sophisticated

as PhysiCell’s). How the translator mitigates this issue is described in Section 4.5.2.

4.4.3 Extracting Cell Types and Constraints

The present section discusses the process of extracting information about cell types and

constraints in the PhysiCell-CompuCell3D translation pipeline. The first step in this pro-

cess involves the extraction of cell types from PhysiCell’s XML. Subsequently, the transla-

tor extracts the values associated with mechanics, custom data, and phenotype constraints.

The translator converts extracted units to pixels/MCSs, using the conversion factors for

time and space that were previously calculated in Equation 4.13 and 4.15. Appendix B.3

shows the functions that do the cell type and mechanics extraction.

The translator then loops over the cell constraints in the XML file, extracting the cell

volume and cell-type name as the first pieces of information about the cells. If the pixel

volume is below the minimum practical volume (default set to eight pixels), a flag is set

to correct the conversion later in the process (described in Section 4.5.1). Following this,

the mechanics constraints are extracted, including the repulsion-attraction force potential

between cells, the equilibrium distance for the potential, the rate of cell adhesion molecule

(CAM) [76] binding and unbinding, the spring constant for these CAMs, and the maximum

distance at which two cells can start forming CAMs. It should be noted that the simulation

of adhesion is complex in PhysiCell and differs from the method used in CompuCell3D,

which involves defining a contact energy [10], and is much simpler. Due to this discrep-

ancy, the translator does not attempt to implement a parameter translation for adhesion in

its current version. A method to include this information is under investigation, see Sec-

tion 4.5.3.

It should be noted that the default boundary condition for PhysiCell cells is periodic, to

have a contained simulation PhysiCell uses an XML element,

virtual wall at domain edge . The translation uses this element to set the bound-
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ary conditions for cells in the CompuCell3D simulation. It should be noted that since, from

the point of view of the simulation and cells in the simulation, nothing exists outside the

simulation domain, cells near the simulation’s border will experience a zero energy with

the ”outside.” Therefore, cells tend to stick to the borders of the simulation (as the other

contact energies are J > 0.) It is standard practice in CompuCell3D to have a wall ”cell”

type to build the simulation border. This way the contact with the border can be controlled.

If virtual wall at domain edge is true, i.e., the simulation’s cell boundary con-

dition is not periodic, the translator will create the wall ”cell” type and build the wall for

the simulation.

The phenotype data is then extracted, and the translator identifies the phenotypes that

a given cell type can exhibit. For example, a cancer cell may have one phenotype while it

is alive, and a different phenotype once it has died. The translator prepares the phenotype

data in a format suitable for PhenoCellPy (refer to Chapter 5), and includes checks for the

availability of PhenoCellPy.

As chemotaxis in PhysiCell merely biases the cell velocity while in CompuCell3D it

will change the cell speed the translator, the only information the translation extracts is

which cell-types chemotax on which fields and if they chemotax up the gradient or down

the gradient. Lastly, custom cell parameters are extracted. These parameters are model-

specific and can be related to a variety of factors. Although they are made available, the

translator does not use them. Section 4.6.2 provides further details on how this information

is made available.

4.4.4 Extracting Diffusing Elements

The translation of diffusing elements in CompuCell3D is performed subsequent to the cor-

rection of space conversion (as explained in Section 4.5.1), since the space correction mod-

ifies how much space each pixel represents, and, therefore, changes the diffusion constant.

The process of extracting diffusing elements is similar to that of extracting cell type data.
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The translator reads the corresponding XML tag, determines the number of diffusing el-

ements, and converts the diffusion parameters. A sample XML for a diffusing element is

presented in Listing 3. In Listing 3, we can see that PhysiCell sets units for the concentra-

tion of diffusing elements. These units, however, are not used for anything in PhysiCell.

Therefore, the translator ignores concentration units and treats all of them as arbitrary units

(AU).

1 <variable name="oxygen" units="mmHg" ID="0">

2 <physical_parameter_set>

3 <diffusion_coefficient units="micronˆ2/min">

4 100000

5 </diffusion_coefficient>

6 <decay_rate units="1/min">0.1</decay_rate>

7 </physical_parameter_set>

8 <initial_condition units="mmHg">38</initial_condition>

9 <Dirichlet_boundary_condition units="mmHg" enabled="true">

10 38

11 </Dirichlet_boundary_condition>

12 </variable>

Listing 3: Example PhysiCell XML for a diffusing element

The diffusion constant, denoted by D, has units of [space2/time]. Considering Equa-

tions 4.13 and 4.15 and accounting for units, the conversion of D from its value specified

in PhysiCell to a value that can be used in CompuCell3D is given by:

Dcc3d = Dpsc × dtpscmech

(δXpsc)2
. (4.16)

Here, Dcc3d is the diffusion constant for CompuCell3D with [pixel2/MCS] as units, and

Dpsc is the diffusion constant in PhysiCell. The decay constant for diffusion has units of

[1/time]. Consequently, with similar considerations, we have:

γcc3d = γpsc × dtpscmech . (4.17)
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Where γcc3d is the decay constant for CompuCell3D, with [1/MCS] as units, and γpsc the

decay constant in PhysiCell.

As mentioned, if the diffusion constants are high, CompuCell3D’s diffusion solver re-

quires extra calls for each time-step to avoid numerical errors, greatly slowing the sim-

ulation. The translator mitigates some of this issue by setting diffusing fields with high

diffusion constants (Dcc3d > 1000 pixel2/MCS by default) to use the steady-state diffu-

sion solver. Using the steady-state solver is a good approximation for very high Dcc3ds,

but not for medium levels of Dcc3d. To deal with medium-high Dcc3ds (any Dcc3d ∈

[50, 1000) pixel2/MCS by default) the translator will re-parameterize the time conver-

sion (just as low cell volumes make the translator re-parameterize space), this process is

described in Section 4.5.2.

Apart from converting the diffusion parameters, the translator also extracts information

regarding the boundary conditions and initial conditions of diffusing fields.

4.4.5 Secretion and Uptake

This software performs the translation of secretion and uptake rates by cells of diffusing

elements after it re-scales the time conversion (see Section 4.5.2), as that re-scaling would

change the values of these rates.

PhysiCell has a concept of proportional-secretion [11], which CompuCell3D does not.

Proportional secretion changes the secretion rate of the cell based on how much concentra-

tion of diffusing material is already near the cell. It is:

snet(σ) = rs × (ctg(σ)− c(σ)) + sbase(σ) . (4.18)

Where snet(σ) is the net secretion by cell σ for a particular diffusing element, rs is the con-

centration based secretion rate of that diffusing element, ctg(σ) the target concentration at

which the proportional secretion will cease for cell σ, and sbase(σ) an independent secretion
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rate for cell σ that does not cease. It should be noted that snet ≥ 0. Even though Compu-

Cell3D does not have a similar concept to PhysiCell’s proportional secretion, it is straight

forward to implement in CompuCell3Dusing simple Python operations. Section 4.6.2.2

shows how this is implemented for CompuCell3D.

Uptake, in contrast, is simple. The cells remove a fraction of the diffusing element that

is near them at each time-step. I.e.,

u(σ) = ru × c(σ) . (4.19)

It must be noted that ru ≤ 1 to avoid numerical errors.

As the units of secretion/uptake are proportional to [1/time] and the concentration unit

is not translated at all, the translation of the rates is similar to the translation of the decay

rate,

rcc3di = dtpscmech × rpsci . (4.20)

Where ri are the secretion/uptake rates (Equation 4.18 and 4.19) or the base secretion rate

(sbase, Equation 4.18). Appendix B.4 shows the function responsible for the secretion and

uptake rates change.

4.5 Challenges

The translation process undertaken in this study has identified several challenges previ-

ously anticipated as well as revealed novel issues. While some problems such as small

cells have been successfully addressed (as outlined in Section 4.5.1), the problem of trans-

lating adhesion remains unresolved. Another newly identified issue is high diffusion con-

stants (see Section 4.4.4), the translator alleviates this issue through the implementation

of a steady-state diffusion solver for diffusing fields with very high diffusion constants

(see Section 4.4.4). For medium to high values of the diffusion constant, the translator

re-parameterizes the time conversion process (see Section 4.5.2).
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The interpretation of phenotypes, their reimplementation in Python, and improved us-

ability and customization was a major aspect of this project. In fact, this process became

so significant that it evolved into a separate project, PhenoCellPy, which is described in

Chapter 5.

4.5.1 Appropriate Cell and Simulation Domain Sizes

Section 4.4.1 points out that the straight forward methods for translating space may lead

to cells with < 1 pixel in CompuCell3D. To address this issue, a series of functions were

implemented to stretch the simulated domain so that the smallest cell volume met the min-

imum requirement of 8 pixels (this minimum can be changed when running the translator).

This was accomplished by expanding the cell volumes and spatial dimensions based on a

calculation using the minimum allowable pixel volume,

rV =

⌈
νcc3dpx

min{V cc3d
px (σ)}

⌉
, (4.21a)

∆X ′ cc3d
i = rV ×∆Xcc3d

i . (4.21b)

Where rV is the expansion ratio, V cc3d
px (σ) are the cell volumes in pixels, {V cc3d

px (σ)} the set

of cell volumes, min the operation to get the minimum value of a set, νcc3dpx the minimum

pixel volume the cells are allowed to have, ⌈ ⌉ the ceiling (i.e., round up) operation, ∆Xcc3d
i

the previously determined simulation domain sides, and ∆X ′ cc3d
i the expanded simulation

domain sides. If the simulation is 2D, the translator does not change the z dimension from

1. This change implies a change to the units of the pixel (i.e., how many µm/m/etc. it

represents). Listings 4, 5, and 6 show the functions that perform this operation.
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1 def reconvert_spatial_parameters_with_minimum_cell_volume(constraints,

2 ccdims, pixel_volumes, minimum_volume):

3 """

4 Parameters:

5 -----------

6 constraints : dict

7 The previously converted dictionary of cell constraints

8 ccdims : tupple

9 A tuple of the previously converted cc3d space parameters

10 pixel_volumes : list

11 A list of volumes of cells in pixels

12 minimum_volume : int

13 The minimum volume required for the cell in pixels

14 Returns:

15 - Tuple[Tuple, Dict]: A tuple containing the converted `ccdims`
16 and `constraints`.
17 """

18 px_vols = [px for px in pixel_volumes if px is not None]

19 minimum_converted_volume = min(px_vols)

20 reconvert_ratio = ceil(minimum_volume / minimum_converted_volume)

21 ccdims = reconvert_cc3d_dims(ccdims, reconvert_ratio)

22 constraints = reconvert_cell_volume_constraints(constraints,

23 reconvert_ratio, minimum_volume)

24 return ccdims, constraints

Listing 4: Function to reconvert spatial parameters based on the smallest cell volume, calls
the functions in Listings 5, and 6. Defines what is the scaling ratio based on ⌈min(V cc3d

px (σ))

νcc3dpx
⌉,

where V cc3d
px (σ) is the list of cell volumes in pixels and νcc3dpx the minimum volume in pixels

the cells are allowed to have.
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1 def reconvert_cc3d_dims(ccdims, ratio):

2 """

3 Parameters:

4 -----------

5 ccdims : tuple

6 A tuple containing the number of pixels in each dimension

7 of a 3D domain, the pixel -- real unit relationship,

8 and the pixel -- real unit ratio.

9 ratio : int

10 The ratio to multiply the number of pixels in each dimension

11 by.

12 Returns:

13 --------

14 tuple: A new tuple containing the updated number of pixels in

15 each dimension, the updated pixel -- real unit

16 relationship, and the updated pixel -- real unit ratio.

17 """

18 ccdims = list(ccdims)

19 number_pixels = [ratio * ccdims[0], ratio * ccdims[1],

20 ratio * ccdims[2]]

21 old_pixel_unit_ratio = ccdims[-2]

22 # pixel` = ratio*pixel = ratio * conv * unit

23 new_pixel_unit_ratio = ratio * old_pixel_unit_ratio

24 new_string = ccdims[3].replace(str(old_pixel_unit_ratio),

25 str(new_pixel_unit_ratio))

26 new_ccdims = (number_pixels[0], number_pixels[1], number_pixels[2],

27 new_string, new_pixel_unit_ratio, ccdims[-1])

28 return new_ccdims

Listing 5: Function to re-set the simulation domain sides (∆Xcc3d
i in Equation 4.12), and

pixel units (Equation 4.13), based on the ratio (rV ) defined by the function in Listing 4.
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1 def reconvert_cell_volume_constraints(con_dict, ratio, minimum_volume):

2 """

3 Parameters

4 ----------

5 con_dict : dict

6 Dictionary of constraints to be converted.

7 Each key in the dictionary corresponds to a type of constraint,

8 and its value is a dictionary with keys like 'volume', 'surface',

9 etc.

10 ratio : int

11 The ratio between the old voxel size and the new voxel size.

12 All volume constraints are multiplied by this factor.

13 minimum_volume : int

14 The minimum value to replace any None values in the 'volume' key.

15 Returns

16 -------

17 dict

18 A new dictionary of constraints, where the 'volume' key values

19 have been converted to the new voxel size, and any None values

20 have been replaced with the `minimum_volume`.
21 """

22 new_con = {}

23 for ctype, const in con_dict.items():

24 new_con[ctype] = const

25 if const['volume']["volume (pixels)"] is None:

26 new_con[ctype]['volume']["volume (pixels)"] = minimum_volume

27 else:

28 new_con[ctype]['volume']["volume (pixels)"] = ratio * \

29 const['volume']["volume (pixels)"]

30 return new_con

Listing 6: Function that increases the cell volumes (in pixels) based on the ratio (rV ) de-
fined by the function in Listing 4. This function loops over the cell types in the constraint
dictionary and does the multiplication. If any cell does not have a volume (in pixels) set
this function will default its volume to the minimum volume νcc3dpx .

However, this solution presented a new problem: the expanded simulation domain

became too large, with the potential to exceed 264 pixels, causing a numerical overflow.

Even when that hard limit is not reached, memory use becomes an issue quickly. A

1500 × 1500 × 1500 lattice, for instance, would require, at a minimum, approximately

27GB of RAM due to pixel memory use. Each pixel in CompuCell3D uses 8 bytes for
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each type of data shown, i.e., the cell field pixels will each use 8 bytes, then each diffusing

field pixel will each also use 8 bytes, and so on.

To address this issue, the translation process truncates the simulation domain to limit

the simulation size. By default, no simulation can have more than V cc3d
max = 3, 375, 000 pix-

els (1503 pixels). The function that performs the truncation process (see Listing 7) takes the

previously expanded CompuCell3D dimensions (i.e., the results from Equation 4.21) and

the maximum simulation domain volume as arguments. If the domain size doesn’t exceed

the maximum, the function doesn’t perform any operations. If the maximum volume is ex-

ceeded and all the sides are the same, the function sets the sides to Xdefault = ⌈(V cc3d
max )

1/3⌋

(⌈ ⌋ is the operation that rounds to the nearest integer). If the sides are not the same, the

translator calculates the average domain side (⟨∆X⟩), each side’s proportion to the average

(Pi), and sets the new side to be the default simulation side (Xdefault) times the respective

proportion. In other words,

⟨∆X⟩ = 1

3

3∑
i=1

∆X ′ cc3d
i (4.22a)

Pi =
∆X ′ cc3d

i

⟨∆X⟩
(4.22b)

∆X ′′ cc3d
i = ⌊Pi ×Xdefault⌋ (4.22c)

Where ∆X ′ cc3d
i are the increased simulation sides (see Equation 4.21b), ⌊ ⌋ the floor (i.e.,

round down) operator, and ∆X ′′ cc3d
i are the truncated simulation sides.

It’s worth noting that this approach does mean that the initial conditions defined in

PhysiCell can’t be easily adapted, and that some simulations may not have important parts

of their domain represented.
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1 def decrease_domain(ccdims, max_volume=150 ** 3):

2 """

3 Parameters:

4 -----------

5 ccdims : tuple

6 tuple of 6 elements containing information about the 3D

7 domain

8 max_volume : int

9 maximum allowed volume of the domain in pixels. Default is

10 150ˆ3 pixels.

11 Returns:

12 new_dims: tuple

13 typle of 6 elements containing the new dimensions of the

14 domain,

15 after decreasing its size if necessary.

16 truncated : bool

17 indicates whether the domain was truncated. If True,

18 a warning message is issued.

19 """

20 default_side = round(max_volume ** (1 / 3))

21 old_dims = [ccdims[0], ccdims[1], ccdims[2]]

22 old_volume = ccdims[0] * ccdims[1] * ccdims[2]

23 if old_volume < max_volume:

24 return ccdims, False

25 if old_dims[0] == old_dims[1] == old_dims[2]:

26 new_dims = [default_side, default_side, default_side]

27 else:

28 med_s = sum(old_dims) / len(old_dims)

29 proportions = [d / med_s for d in old_dims]

30 new_dims = [int(default_side * p) for p in proportions]

31 new_dims.extend([ccdims[3], ccdims[4], ccdims[5]])

32 message = f"WARNING: Converted dimensions of simulation domain"\

33 f" totaled > {default_side}**3 pixels. \nWe have " \

34 f"truncated " \

35 f"the sides of the simulation.This may break the "\

36 "initial conditions as defined in " \

37 f"PhysiCell.\nOld dimensions:{ccdims[0:3]}\nNew "\

38 f"dimensions:{new_dims[0:3]}"

39 warnings.warn(message)

40 return new_dims, True

Listing 7: Function that truncates the simulation domain sides if necessary. If the current
simulation volume does not exceed the maximum volume allowed this function simply
returns the dimensions as are and a flag stating that no change was performed. Otherwise,
it performs the operations described in Equation 4.22, and returns the new dimensions and
a flag stating that they were truncated. 88



4.5.2 Appropriate Diffusion Parameters

Sections 4.4.2 and 4.4.4 state that the time and diffusion parameter translations will lead

to diffusion constants (D) that are very high, causing several extra calls to CompuCell3D’s

diffusion solvers and, consequently, a considerable simulation slow down. Some of the

extra calls, and slow down, is mitigated by approximating the diffusion process with the

steady-state solution, as described in Section 4.4.4.

As we need to decrease the number of extra calls to the diffusion solver we have to

make the amount of time each time-step represents smaller, and proportionally increase the

total number of time-steps the simulation will perform. In other words, to achieve a more

general solution, the translation process reduces the time unit in CompuCell3D, i.e., the

amount of minutes/hours/etc. each MCS represent is decreased.

The translator reduces the diffusion constants in a similar fashion to the cell volume

increase. By determining if any (non-steady-state) Ds are above a maximum (Dmax =

50pixel2/MCS by default), finding what is the ratio of Dmax to the biggest diffusion con-

stant, and reducing all diffusion parameters by that ratio. The translator rounds the ratio to

the 2 most significant digits before the reduction process. I.e.,

rD =

⌈
Dmax

max{Dnss
i }

⌋
2

, (4.23a)

D′
i = rD ×Di . (4.23b)

Where {Dnss
i } is the set of diffusion constants (Dnss

i ) that have not been set to use the

steady-state solver, ⌈ ⌋2 the operator to round to the 2 most significant digits, and D′
i the

re-scaled diffusion constants. It’s important to note that although only the non-steady-state

diffusion constants (Dnss
i ) are used to determine rD, all diffusion constants (Di) are re-

scaled.
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The other parameters that have time in their units also need re-scaling. To reduce the

number of operations most of the translation happens after the re-scaling steps (e.g., trans-

lation of secretion/uptake rates). Therefore, the only other parameter that needs re-scaling

at this point is the decay rates (γi) of the diffusing elements. The process is the same as the

one shown in Equation 4.23b,

γ′i = rD × γi . (4.24)

Where γ′i are the re-scaled decay constants.

The function that performs the time, diffusion, and decay constants re-scaling is in

Appendix B.5.

4.5.3 Cell-Cell Adhesion & Repulsion Implementation

Cell-Cell adhesion and repulsion in PhysiCell have a complex functional form (see Equa-

tions 4.7 and 4.8), CompuCell3D’s contact energy can’t replicate them. Even though the

translator extracts all the relevant information about PhysiCell’s adhesion and repulsion

forces, they are not used. Instead the translator defaults to using the regular CPM adhesion

energy with contact energy constants (i.e., J(σ, σ′)) set to 10, see Section 4.6.1.3.

CompuCell3D, however, has another, more complex, form of adhesion: Adhesion

Flex [77]. We are currently investigating how to use adhesion flex in a way that con-

forms to PhysiCell’s adhesion and repulsion forces, it will replace the first energy term in

the Halmiltonian shown in Equation 4.2. Adhesion Flex is more flexible than the regular

contact energy in a few ways. While the regular contact energy is defined in a cell-type

pair basis adhesion flex can be cell on a individual cell basis. And, more importantly, it can

have an arbitrary functional form. The adhesion flex contact energy is

Hadhesion−flex =
∑
i

∑
jv

(
−
∑
m

∑
n

kmnF (Nm(i), Nn(j))

)
(1− δ(σi, σj)) . (4.25)
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The first two sums, as in Equation 4.2, are over all the pixels of the simulated domain (i),

and i’s neighboring pixels (jv). The internal sums (i.e.,
∑

m

∑
n kmnF (Nm(i), Nn(j))) is

the contact energy between cells σi and σj , m and n are indices for the adhesion molecules

expressed by σi and σj , F (Nm(i), Nn(j)) is a user-defined function of the number of

molecules n and m of cells σi and σj , and kmn is a scaling factor for the user-defined

function F . As before, the Kronecker delta guarantees that a cell will not have a contact

energy with itself.

By integrating PhysiCell’s adhesion and repulsion forces and combining them together

we can find an equivalent form for F (Nm(i), Nn(j)), we need to be careful about how we

translate the continuous maximum range from PhysiCell to a discrete range fit for Compu-

Cell3D.

4.5.4 CPM Limitation on Cell Speed

As cells move pixel by pixel in CPM, there effectively is a maximum speed they can migrate

with [78]. Typically, the center of mass of a CPM cell will not move more than 0.25 ∼ 0.5

pixel/MCS. This fact is not considered by the translator when scaling the value of the pixel

and of MCS in the translated simulation, which means that cells in the translated simulation

may move more slowly than they should if the original PhysiCell was to be respected.

Respecting both the speed of the original cells and the original diffusion parameters is a

challenge that requires future work.

4.6 Generating the CompuCell3D Simulation

After the conversion of all the relevant information from the original PhysiCell simulation

to a form that can be utilized by CompuCell3D and the mitigation of any conversion issues,

the files for CompuCell3D can be produced. The process of generating the files commences

with the XML file. The XML file sets the cell types, diffusing fields (and associated con-

stants and boundary conditions), and loads model plugins (e.g., energies in the model’s
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Hamiltonian, different monitors and trackers, cell secretion and uptake). Plugins need to

be loaded into CompuCell3D explicitly in order to have its capabilities available. For in-

stance, if the volume plugin is not loaded cells can’t have a target volume that they will

tend towards, if the secretion plugin is not loaded the simulation can’t perform secretion or

uptake, and so on.

Complex behavior is defined through Python classes called ”steppables” (named after

”time-steps”). The Python file containing the steppables is the first thing generated after the

XML. Finally, the translator creates and intermediary Python file that registers the steppable

classes with CompuCell3D.

Upon completion of the simulation generation process, the translated CompuCell3D

simulation is stored in a folder as specified by the user. In the event that no folder is spec-

ified, the translator creates a folder labeled ”CC3D converted sim” in the same directory

where the initial PhysiCell XML file is located and saves the translated simulation in this

folder.

4.6.1 Creating the XML file

4.6.1.1 Cell Types

The translator begins the generation of the XML by creating the cell types tag. It is gener-

ated with the extraction of cell types and constraints, described in Section 4.4.3. The code

that shows how this is done is in Appendix B.3. Listing 8 shows a typical cell types XML

tag. CompuCell3D can set the cells to never change its constituent pixels by adding the

”freeze” statement in a specific cell type tag, this is specially useful for the wall ”cell”.
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1 <Plugin Name="CellType">

2 <CellType TypeId="0" TypeName="Medium"/>

3 <CellType TypeId="1" TypeName="cancer_cell"/>

4 <CellType TypeId="2" TypeName="immune_cell"/>

5 <CellType Freeze="" TypeId="3" TypeName="WALL"/>

6 </Plugin>

Listing 8: Typical cell type XML tag for CompuCell3D.

4.6.1.2 Simulation Domain and Boundary Conditions

Next the <Potts> tag is generated, this tag sets the domain size, temperature of the simu-

lation (see [10] for a definition of temperature in Cellular Potts Models), total number of

time-steps the simulation does, and if the boundary conditions for the cells is periodic. As

mentioned in Section 4.3.1, the CPM algorithm will select two pixels, the second is picked

from a Von Neumann neighborhood with a set range of the first. This range is defined by

the ”NeighborOrder” element in the Potts tag. This range/neighbor order is separate from

the contact energy neighborhood range. Listing 9 shows a typical CompuCell3D Potts tag.

1 <Potts>

2 <Dimensions x="150" y="150" z="150"/>

3 <Steps>1000</Steps>

4 <Temperature>10.0</Temperature>

5 <NeighborOrder>1</NeighborOrder>

6 <!-- <Boundary_x>Periodic</Boundary_x> -->

7 <!-- <Boundary_y>Periodic</Boundary_y> -->

8 </Potts>

Listing 9: Typical Potts XML tag for CompuCell3D.

The translator adds custom tags to the Potts block regarding the relationship of pixel to

real units and MCS to real units, namely<Space Units>,<Pixel to Space>,<Time Units>,

and <MCS to Time>. They name what is used as the space unit (e.g., µm/nm/etc), how

much space each pixel represents, what is used as the time unit (days /h/minutes/etc),
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and how much time each MCS represents, respectively. It also adds a few comments about

the translation process. Listing 10 shows an example Potts tag generated by the translator.

Listing 11 shows the function that generates the Potts tag and the extra information that is

added by the translator.

1 <Potts>

2 <!-- Basic properties of CPM (GGH) algorithm -->

3 <Space_Units>1 pixel = 0.05 micron</Space_Units>

4 <Pixel_to_Space units="pixel/micron" id = "pixel_to_space">10

5 </Pixel_to_Space>

6 <Dimensions x="150" y="150" z="1"/>

7 <Time_Units>1 MCS = 10.0 min</Time_Units>

8 <MCS_to_Time units="MCS/min" id = "mcs_to_time">0.02</MCS_to_Time>

9 <Steps>14400</Steps>

10 <!-- As the frameworks of CC3D and PhysiCell are very different -->

11 <!-- PC doesn't have some concepts that CC3D does. Temperature is

12 one of -->

13 <!-- them, so the translation script leaves its tunning as an

14 exercise-->

15 <!-- for the reader -->

16 <Temperature>10.0</Temperature>

17 <!-- Same deal for neighbor order as for temperature-->

18 <NeighborOrder>1</NeighborOrder>

19 <!-- <Boundary_x>Periodic</Boundary_x> -->

20 <!-- <Boundary_y>Periodic</Boundary_y> -->

21 </Potts>

Listing 10: Translator generated Potts XML tag for CompuCell3D.
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1 def make_potts(pcdims, ccdims, pctime, cctime):

2 """

3 Parameters

4 ----------

5 pcdims : tuple

6 Tuple of infomration from PhysiCell

7 ccdims : tuple

8 Tuple of infomration from CC3D

9 pctime : tuple

10 Tuple with the time unit from PhysiCell

11 cctime : tuple

12 Tuple with the time parameters for CC3D

13 Returns

14 -------

15 str

16 Potts XML string with the given parameters.

17 """

18 potts_str = f"""

19 <Potts>

20 <!-- Basic properties of CPM (GGH) algorithm -->

21 <Space_Units>{ccdims[3]}</Space_Units>
22 <Pixel_to_Space units="pixel/{pcdims[3]}" id = "pixel_to_space">

23 {ccdims[4]}
24 </Pixel_to_Space>

25 <Dimensions x="{ccdims[0]}" y="{ccdims[1]}" z="{ccdims[2]}"/>
26 <Time_Units>

27 {cctime[1]}
28 </Time_Units>

29 <MCS_to_Time units="MCS/{pctime[1]}" id = "mcs_to_time">

30 {cctime[2]}
31 </MCS_to_Time>

32 <Steps>{cctime[0]}</Steps>
33 <!-- As the frameworks of CC3D and PhysiCell are very different -->

34 <!-- PC doesn't have some concepts that CC3D does. Temperature is

35 one of -->

36 <!-- them, so the translation script leaves its tunning as an

37 exercise-->

38 <!-- for the reader -->

39 <Temperature>10.0</Temperature>

40 <!-- Same deal for neighbor order as for temperature-->

41 <NeighborOrder>1</NeighborOrder>

42 <!-- <Boundary_x>Periodic</Boundary_x> -->

43 <!-- <Boundary_y>Periodic</Boundary_y> -->

44 </Potts>\n"""
45 return potts_str

Listing 11: Function that generates the Potts tag for CompuCell3D.
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4.6.1.3 Contact Energies

From Equation 4.2, the standard contact energy in CPM is:

Hcontact =
∑
i

∑
{j}i

J (τ(σi), τ(σj)) (1− δ(σi, σj)) . (4.26)

Equation 4.26 implies that a CPM requires a contact energy matrix with size equal to

the number of cell type pairs defined. As cells contact the medium they are in, it must

also be included in the matrix. For these reasons, the translator begins by creating all the

cell-type combinations (including a type with itself). After the combinations are created,

the translator loops through them and generates a string that will be the contact energy

XML tag. The translator defaults all contact energy to 10, and the contact energy range

to 3. Listing 12 containg a typical contact enegy XML tag, and Listing 13 the translator’s

function that generates it.

1 <Plugin Name="Contact">

2 <Energy Type1="Medium" Type2="Medium">10.0</Energy>

3 <Energy Type1="Medium" Type2="cancer_cell">10.0</Energy>

4 <Energy Type1="Medium" Type2="immune_cell">10.0</Energy>

5 <Energy Type1="immune_cell" Type2="immune_cell">10.0</Energy>

6 <Energy Type1="cancer_cell" Type2="cancer_cell">10.0</Energy>

7 <Energy Type1="cancer_cell" Type2="immune_cell">10.0</Energy>

8 <NeighborOrder>3</NeighborOrder>

9 </Plugin>

Listing 12: Typical contact energy XML tag for CompuCell3D.
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1 def make_contact_plugin(celltypes):

2 """

3 Parameters:

4 ----------

5 celltypes : list

6 A list of strings representing the cell types in the

7 simulation.

8 Returns:

9 -------

10 contact_plug : str

11 A string containing the configuration for the contact plugin

12 """

13 combs = list(combinations(celltypes, 2))

14 for t in celltypes:

15 combs.append((t, t))

16 combs.reverse()

17 contact_plug = """

18 <Plugin Name="Contact">

19 \t<!-- PhysiCell doesn't have an equivalent to this plugin. Its -->

20 \t<!-- tunning and deciding on the neighbor order is left as an -->

21 \t<!-- exerise to the reader. -->

22 \t<!-- A better option (to be implemented) is to use the adhesion flex

23 -->

24 \t<!-- Specification of adhesion energies -->

25 \t<Energy Type1="Medium" Type2="Medium">10.0</Energy>\n"""
26 # 1 make the medium contact energies

27 me = ""

28 for t in celltypes:

29 me += f'\t<Energy Type1="Medium" Type2="{t}">10.0</Energy>\n'
30 # 2 make the combination energies

31 ce = ""

32 for t1, t2 in combs:

33 ce += f'\t<Energy Type1="{t1}" Type2="{t2}">10.0</Energy>\n'
34 contact_plug += me + ce + "\t<NeighborOrder>3</NeighborOrder>\n"\
35 "</Plugin>"

36 return contact_plug

Listing 13: Function that generates the contact energy tag for CompuCell3D.

4.6.1.4 Initial Condition

As noted in Section 4.5.1, the initial conditions from PhysiCell can’t be easily adapted.

Therefore the translator defaults to a simple initial condition of filling most of the simula-

tion domain with an equal number of cells from each defined cell type placed at random.
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CompuCell3D does this sort of initialization with the uniform initializer tag in the XML.

Listing 14 shows a typical uniform initializer, and the translator’s function that creates it is

in Appendix B.5. It should be noted that the wall ”cell” type is not included in this initial

condition cell mix.

This tag allows to define a cuboid in which the cells are placed, all cells begin as cubes,

the tag also allows to define what should be the initial side-length of the cells (”<Width>”

in the tag).

1 <Steppable Type="UniformInitializer">

2 <Region>

3 <BoxMin x="10" y="10" z="10"/>

4 <BoxMax x="140" y="140" z="140"/>

5 <Gap>0</Gap>

6 <Width>7</Width>

7 <Types>cancer_cell,immune_cell</Types>

8 </Region>

9 </Steppable>

Listing 14: Typical uniform initializer XML tag for CompuCell3D.

4.6.1.5 Diffusion Plugin

As the translator sets some diffusing elements to be approximated by their steady-state

solution while some are kept dynamic, it need to create two Diffusion Plugins tags in the

XML for CompuCell3D (one for each type of solver). The XML setting diffusion elements

for CompuCell3D is complex, with elements for the diffusing element name, secretion

(which is redundant with the separate diffusion plugin, and the translator does not use), and

boundary conditions. The translator adds more elements to report the concentration units

for that diffusion element, and several comments.
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1 <Steppable Type="DiffusionSolverFE">
2 <!-- Specification of PDE solvers -->

3 <DiffusionField Name="oxigen">
4 <DiffusionData>
5 <FieldName>oxigen</FieldName>
6 <GlobalDiffusionConstant>0.1</GlobalDiffusionConstant>
7 <GlobalDecayConstant>1e-05</GlobalDecayConstant>
8 <!-- Additional options are: -->

9 <!-- <InitialConcentrationExpression>x*y

10 </InitialConcentrationExpression> -->

11 <!-- <ConcentrationFileName>INITIAL CONCENTRATION FIELD -

12 typically a file with path Simulation/NAME_OF_THE_FILE.txt

13 </ConcentrationFileName> -->

14 <DiffusionCoefficient CellType="cellA">0.1
15 </DiffusionCoefficient>
16 <DiffusionCoefficient CellType="cellB">0.1
17 </DiffusionCoefficient>
18 <DecayCoefficient CellType="cellA">0.0001</DecayCoefficient>
19 <DecayCoefficient CellType="cellB">0.0001</DecayCoefficient>
20 </DiffusionData>
21 <BoundaryConditions>
22 <Plane Axis="X">
23 <ConstantValue PlanePosition="Min" Value="10.0"/>
24 <ConstantValue PlanePosition="Max" Value="5.0"/>
25 <!-- Other options are (examples): -->

26 <!-- <Periodic/> -->

27 <!-- <ConstantDerivative PlanePosition="Min" Value="10.0"/>

28 -->

29 </Plane>
30 <Plane Axis="Y">
31 <ConstantDerivative PlanePosition="Min" Value="10.0"/>
32 <ConstantDerivative PlanePosition="Max" Value="5.0"/>
33 <!-- Other options are (examples): -->

34 <!-- <Periodic/> -->

35 <!-- <ConstantValue PlanePosition="Min" Value="10.0"/> -->

36 </Plane>
37 </BoundaryConditions>
38 </DiffusionField>
39 </Steppable>

Listing 15: Typical diffusion XML tag for CompuCell3D.

CompuCell3D allows the diffusion parameters (diffusion constant and decay constant)

for each diffusing element to vary on a cell-type basis [10]. The translator adds comments

explaining this feature, and creates the XML elements that would define this while keeping
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them commented out. CompuCell3D has more options for the diffusing elements boundary

conditions than PhysiCell. In PhysiCell, they can either be Dirichlet boundary conditions

(i.e., with their values fixed to a constant), or ”free-floating” (i.e., zero derivative boundary

condition). CompuCell3D is capable of simulating those, as well as non-zero derivative

boundary condition, and periodic boundary conditions. Boundary conditions are set on a

diffusing element basis. Listing 15 shows a typical XML tag for a diffusing element in

CompuCell3D. This XML is for a non-steady-state diffusing element, the only change for

a steady-state element would be in the opening XML tag, from Type=”DiffusionSolverFE”

to Type=”SteadyStateDiffusionSolver”.

The translator’s functions that generate the diffusion XML declarations are in Ap-

pendix B.7.

4.6.1.6 Secretion

As secretion from PhysiCell is complex, it must performed in Python for CompuCell3D.

Therefore we only need to load it in the XML. The translator detects if there is any secretion

defined and, if so, it places the XML tags from Listing 16 in CompuCell3D’s XML to

make the secretion plugin available. Section 4.6.2.2 shows how secretion is implemented

in Python.

1 <Plugin Name="Secretion"/>

Listing 16: Secretion XML tag for CompuCell3D to load that plugin.

4.6.1.7 Chemotaxis

As chemotaxis in CompuCell3D is usually included to the cell behavior in the steppable

class, the translation only adds the necessary XML to load the chemotaxis plugin, and state

which fields cells will chemotax on.
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1 <Plugin Name="Chemotaxis">
2 <ChemicalField Name="cargo_signal"/>
3 <ChemicalField Name="director_signal"/>
4 </Plugin>

Listing 17: Example chemotaxis XML tag for CompuCell3D to load that plugin and define
which fields cells will chemotax on.

4.6.2 Creating Steppables File

With the XML file generated the translator begins the process of building the steppables

file. Just as with the XML, the translator builds the steppables by manipulating strings.

In this case of Python commands. Steppables are a special CompuCell3D Python class

that can define actions to be taken at the start of the simulation, continuously during the

simulation (i.e., at each time-step), and at the simulation’s end. This class has many utility

functions, e.g., to list cells of a given type, to perform cell division, to do secretion and

uptake by cells, etc. Steppables are used to interact with cells and implement complex cell

behavior. Cell parameters and attributes, such as their type, constraints (e.g., target surface

and target volume), custom data, can be accessed and modified in the steppables.
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1 def generate_steppable(step_name, frequency, mitosis, minimal=False,
2 already_imports=False, additional_init=None,
3 additional_start=None, additional_step=None,
4 additional_finish=None, additional_on_stop=None,
5 phenocell_dir=False, user_data=""):

6 imports = steppable_imports(user_data=user_data,

7 phenocell_dir=phenocell_dir)

8 declare = steppable_declaration(step_name, mitosis=mitosis)

9 init = steppable_init(frequency, mitosis=mitosis)

10 if additional_init is not None:
11 init = add_to_init(init, additional_init)

12 start = steppable_start()

13 if additional_start is not None:
14 start = add_to_start(start, additional_start)

15 else:
16 start += "\n\t\tpass\n"
17 step = steppable_step()

18 if additional_step is not None:
19 step = add_to_step(step, additional_step)

20 else:
21 step += "\n\t\tpass\n"
22 finish = steppable_finish()

23 if additional_finish is not None:
24 finish = add_to_finish(finish, additional_finish)

25 on_stop = steppable_on_stop()

26 if additional_on_stop is not None:
27 on_stop = add_to_on_stop(on_stop, additional_on_stop)

28 if minimal and already_imports:

29 return declare+init+start+"\n"
30 elif minimal:

31 return imports + declare + init + start + "\n"
32 elif not already_imports:

33 return imports + declare + init + start + step + finish + \

34 on_stop + "\n"
35 return declare+init+start+step+finish+on_stop+"\n"

Listing 18: Generate steppable Python class master function. The later steppable-
generating functions prepare each part of the steppable class and call this function to build
it.

While it is possible to define the simulation in a way that a single steppable class is re-

sponsible for the whole simulation, it is usual and recommended to separate the simulation

in several steppable classes. The translator separates the simulation into three steppable

classes. A constraint initialization steppable, which sets cell constraints, initializes data
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and parameters, and builds the wall around the simulation. A secretion-uptake steppable,

responsible for performing secretion and uptake of diffusing elements. And the phenotype

steppable, it is responsible for using the phenotype submodels (implemented through Phe-

noCellPy), and doing cell division. Although the phenotypes are used in the phenotype

steppable, they are initialized by the constraint steppable.

The steppables are also capable of sharing data among them using the

shared steppable vars dictionary property, and cell objects in CompuCell3D can

carry their own individual data through their dict property [79]. The cell dictionary (i.e.,

the cell object’s dict attribute) is specially useful, as it allows each cell to have arbitrary

information associated with it. The translator uses this to, e.g., have the cell be responsible

for its own secretion (see Section 4.6.2.2).

The generation of each steppable by the translator uses a helper function

generate steppable , Listing 18. It begins by creating the necessary imports, i.e.,

CompuCell3D’s libraries, and the phenotype model package, PhenoCellPy (see Chapter 5

and [13]). As PhenoCellPy is a new Python package, its import is done inside a try-except

block, and if it fails the translator sets a flag that will bypass all of its uses in the resulting

code.

Next, the function proceeds to build the steppable class name and declaration, and

the steppable functions, init , start , step , finish , and on stop , using

intermediary functions ( steppable declaration , steppable init ,

steppable start , steppable step , steppable finish ,

steppable on stop ) and information passed to generate steppable by the

functions that call it. Steppables in CompuCell3D can be called less often than at everystep,

this period (called ”frequency” by CompuCell3D) can be set ona steppable class based and

is the frequency argument of generate steppable . The intermediary functions

are described in Appendix B.8.

Depending on the values of minimal and already imports , different por-
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tions of the steppable code are included in the final output. already imports tells

generate steppable if the imports at the start of the file should be included or

not. minimal defines if the generated steppable should contain only the init

and start functions ( minimal = True ), or if it should also contain the step ,

finish , and on stop functions.

4.6.2.1 Constraint Steppable

The creation of the steppables file begins with the generation of the constraint steppable.

The function generate constraint steppable (Listing 19), is responsible for

generating the constraint steppable. Upon invocation, this function takes several parame-

ters, including cell types , cell type dicts , wall , first , and

user data . The cell types parameter represents the defined cell types within the

simulation, while cell type dicts corresponds to the associated constraint dictio-

naries relevant to each cell type. The wall defines if a perimeter wall should be created

around the simulation’s domain. The first parameter indicates whether this function

is the first steppable to be generated, in which case the initial imports are included by

generate steppable . Finally, user data allows for optional user-defined data

and is used to store the custom data extracted from PhysiCell’s XML.

Internally, the function relies on auxiliary functions such as

generate constraint loops (Listing 20) to iterate through the cell types and ex-

tract the respective constraint dictionaries. generate constraint loops relies on

two intermediary functions that are shown in Appendix B.9.

The function generate constraint steppable also employs the

initialize phenotypes (Appendix B.10) function to initialize the phenotype mod-

els, producing the necessary initialization code. Chapter 5 goes into more detail of what

are the phenotype initialization options. Additionally, the function constructs the required

strings for wall constraints, including the sharing of steppable variables.
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Ultimately, the function assembles the strings that will define the constraint steppable

by invoking the generate steppable function (Listing 18), passing relevant argu-

ments such as the name, minimal flag, and any additional code snippets. The resulting

constraint steppable string is returned as the output of the function.

1 def generate_constraint_steppable(cell_types, cell_type_dicts, wall,

2 first=True, user_data=""):

3 already_imports = not first

4 loops = generate_constraint_loops(cell_types, cell_type_dicts)

5 if not wall:

6 wall_str = "\t\tself.shared_steppable_vars['constraints'] = self"

7 else:
8 wall_str = "\t\tself.build_wall(self.WALL)\n"\
9 "\t\tself.shared_steppable_vars['constraints'] = self"

10 pheno_init = initialize_phenotypes(cell_type_dicts[0])

11 constraint_step = generate_steppable("Constraints", 1, False,
12 minimal=True, already_imports=already_imports,

13 additional_start=pheno_init + loops + wall_str,

14 user_data=user_data)

15 return constraint_step

Listing 19: Function that builds the constraint initialization steppable class.

1 def generate_constraint_loops(cell_types, cell_dicts):

2 loops = "\n"
3 for ctype in cell_types:

4 this_type_dicts = get_dicts_for_type(ctype, cell_dicts)

5 loop = cell_type_constraint(ctype, this_type_dicts)

6 loops += loop

7 return loops

Listing 20: Function that builds the start function loops for the constraint initialization
steppable. Each defined cell type has a loop over all cells of that type that initializes the
constraits relevant to that cell type.

4.6.2.2 Secretion and Uptake Steppable

The generation of the secretion and uptake steppable is handled by the

generate secretion uptake step function (see Listing 21). As usual, behav-

iors are defined on a cell-type basis (and can be changed on a cell basis), therefore this
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function takes as an argument the list of cell types. It also takes the dictionary containing

secretion-uptake information ( sec dict ), the steppable call period ( secretion dt ,

the ”frequency” in the steppable class), and a flag stating if this will be the first steppable

class in the file. If the secretion dictionary is empty we don’t need to have a secretion-

uptake steppable, therefore the function exits early returning an empty string.

1 def generate_secretion_uptake_step(cell_types, sec_dict,

2 secretion_dt=None, first=False):
3 if not sec_dict:

4 message = "WARNING: no secretion data found\n"
5 warnings.warn(message)

6 return ''

7 if secretion_dt is None:
8 secretion_dt = 1

9 already_imports = not first

10 field_names = get_field_names(sec_dict)

11 secretors = make_secretors(field_names)

12 loops = make_secretion_uptake_loops(cell_types, sec_dict)

13 sec_step = generate_steppable("SecretionUptake", secretion_dt,

14 False, already_imports=already_imports,

15 additional_start=secretors, additional_step=loops)

16 return sec_step

Listing 21: Secretion-Uptake steppable class generator function. It exits early if there is no
secretion data, if a steppable period is not defined it defaults to setting the steppable period
to one (i.e., this steppable runs at every time-step in CompuCell3D). It then calls helper
functions to build the steppable start and step functions, and passes the strings to
generate steppable . Finally it returns the steppable as a string.

To do secretion or uptake CompuCell3D uses a specific object to interact with the fields

that has to be initialized, the ”secretor” object. The secretion-uptake steppable generation

function extracts the names of the diffusing elements that have secretion or uptake from

the secretion data dictionary (using get field names ). With those names it generates

CompuCell3D code that will create the secretor objects in CompuCell3D and have them

saved in a dictionary for later use during the simulation steps (see Listing 22).
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1 def make_secretors(field_names):

2 sec_list = "\t\tself.secretors = {"

3 for name in field_names:

4 sec_list += f"'{name}': self.get_field_secretor('{name}'),"
5 sec_list = sec_list[:-1]

6 sec_list += "}\n"
7 return sec_list

Listing 22: Function that generates the secretor objects declaration
for CompuCell3D. Secretors in CompuCell3D are created using the
self.get field secretor(FIELD NAME) function, make secretors

loops over the field names and creates a string that will generate the secretors and save
them to a dictionary in CompuCell3D. The keys of that dictionary are the field names and
the item of the key is the secretor.

The secretion-uptake generation function then creates the CompuCell3D loops that will

have the secretion and uptake calls for each cell (see Listing 23 and 24). The

make secretion uptake loops (see Listing 23) function generates a string repre-

sentation of secretion and uptake loops for all cell types. It takes the cell types, secretion

dictionary, secretors dictionary, and field names as inputs. The function initializes a loop

structure for iterating over the secretors using the self.secretors dictionary. It then

iterates over each cell type and generates secretion loops only for cell types present in the

secretion dictionary. It extracts the comment from the secretion dictionary and calls the

make secretion loop (Listing 24) function to generate the secretion loop string. Fi-

nally, it concatenates the secretor loop string with the generated secretion loops and returns

the resulting string.

The make secretion loop function generates a string representation of a secre-

tion loop for a specific cell type. It takes the cell type and a comment as input. The func-

tion defines the loop structure using the generate cell type loop helper function.

It includes code to check if the field name exists in the cell’s dictionary and retrieves the

corresponding data. It calculates the net secretion based on the secretion rate, secretion

target, and amount seen by the cell, as described in Section 4.4.5 and Equation 4.18. In
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more detail, the secretion and uptake parameters are saved to the cell dictionary bu the

constaint steppable. Then the secretion steppable will read those parameters, calculate the

net secretion and call the secretor’s secretion and uptake functions. The secretion and up-

take rates are saved to dictionary entries: ”secretion rate,” ”secretion target,” ”uptake rate,”

”net export,” ”secretion rate MCS,” ”net export MCS,” ”uptake rate MCS.”

The translator includes explanatory comments regarding the different secretion loca-

tions in CompuCell3D and the implementation of PhysiCell’s net-secretion functionality

with the generated steppable. Finally, it calls the secretion and uptake methods of the se-

cretor object. The function returns the generated secretion loop string.

1 def make_secretion_uptake_loops(cell_types, sec_dict):

2 secretor_loop = \

3 "\t\tfor field_name, secretor in self.secretors.items():\n"
4 loops = ""

5 for ctype in cell_types:

6 if ctype in sec_dict.keys():

7 comment = \

8 sec_dict[ctype][

9 list(sec_dict[ctype].keys())[0]]\

10 ['secretion_comment'] +'\n'
11 loops += make_secretion_uptake_loop(ctype, comment)

12 return secretor_loop + loops

Listing 23: This function loops the cell types and diffusing elements that are involved
in secretion or uptake and creates a CompuCell3D loop over cells for each cell type and
secretor object.
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1 def make_secretion_uptake_loop(ctype, comment):

2 # secretion in physicell is

3 # secretion rate * (target amount - amount at cell) + net secretion

4 # looking at units that is correct:

5 # < secretion_rate units = "1/min" > 0 < / secretion_rate >

6 # < secretion_target units = "substrate density" > 1

7 #< / secretion_target >

8 # < uptake_rate units = "1/min" > 0 < / uptake_rate >

9 # < net_export_rate units = "total substrate/min" > 0

10 #< / net_export_rate >

11 loop = generate_cell_type_loop(ctype, 3)

12 check_field = "\t\t\t\tif field_name in cell.dict.keys():\n"\
13 "\t\t\t\t\tdata=cell.dict[field_name]\n"
14 seen = "\t\t\t\t\tseen = secretor.amountSeenByCell(cell)\n"
15 secrete_rate = "\t\t\t\t\tnet_secretion = max(0, "\

16 "data['secretion_rate_MCS']"\

17 " * (data['secretion_target'] - seen)) +"

18 " data['net_export_MCS']\n"
19 where_secrete = "\t\t\t\t\t# In PhysiCell cells are point-like,"\

20 " in CC3D they"\

21 " have an arbitrary shape. With this " \

22 "\n\t\t\t\t\t# CC3D allows several different secretion "\

23 "locations: over"\

24 "the whole cell (what the translator uses),\n\t\t\t\t\t#"\
25 " just inside the "\

26 "cell surface, just outside the surface, at the surface."\

27 " You should "\

28 "explore the options\n"
29 secrete = "\t\t\t\t\tsecretor.secreteInsideCell(cell,"\
30 " net_secretion)\n"
31 uptake = "\t\t\t\t\tsecretor.uptakeInsideCell(cell, 1e10, "\

32 "data['uptake_rate'])\n"
33 return loop + check_field + seen + comment + secrete_rate + \

34 where_secrete + secrete + uptake

Listing 24: This function creates the loop over cells of a given type. It adds the calculation
for net secretion for a given cell by fetching how much of the diffusing element the cell is
exposed to and cell specific data for that diffusing element. It then concatenates all parts of
the loops and returns them.

Now that the secretion-uptake steppable generator function has built all the necessary

strings that will perform secretion and uptake in CompuCell3D, it uses generate steppable

to assemble the steppable.
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4.6.2.3 Phenotype Steppable

The bulk of the necessary steps to use PhenoCellPy’s [13] phenotypes is done at their

initialization. This, as mentioned, is done by the constraint steppable. Therefore, the phe-

notypes steppable is only responsible for time-stepping the phenotypes, monitoring their

return values, and performing cell division.

The generate phenotypes loops (see Listing 25), with a helper function (see

Listing 26), creates the loops that will do the phenotype time-step. At each time-step

a cell using PhenoCellPy can change its volume, the translator adds code to change the

CompuCell3D’s cell volume consistently. As volumes in PhenoCellPy have real units and

volumes in CompuCell3D are expressed in pixels, the translator uses the conversion factor

determined in Section 4.4.1 to keep both volumes consistent.

1 def generate_phenotype_steppable(cell_types, cell_dicts, first=False):
2 already_imports = not first

3 loops = generate_phenotypes_loops(cell_types, cell_dicts)

4 pheno_step = generate_steppable("Phenotype", 1, True,
5 already_imports=already_imports,

6 additional_step=loops)

7 return pheno_step

Listing 25: Phenotype steppable generator function. It calls
generate phenotypes loops to generate the loops that update the phenotype mod-

els.
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1 def generate_phenotypes_loops(cell_types, cell_dicts):

2 loops = "\n"
3 loops += "\t\tcells_to_divide = []\n\t\tif pcp_imp:\n\t\t\tpass\n"
4 for ctype in cell_types:

5 this_type_dicts = get_dicts_for_type(ctype, cell_dicts)

6 loop = type_phenotype_step(ctype, this_type_dicts)

7 loops += loop

8 loops += f"\t\t\tfor cell in cells_to_divide:\n\t\t\t\t"\
9 "# WARNING: As cells in CC3D have shape, they can be " \

10 f"divided along their minor/major axis, randomly in" \

11 " half, or along a specific vector\n"
12 loops += "\t\t\t\tself.divide_cell_random_orientation(cell)\n"
13 loops += "\t\t\t\t# self.divide_cell_orientation_vector_based"\

14 "(cell, 1, 1, 0)\n"
15 loops += "\t\t\t\t# self.divide_cell_along_major_axis(cell)\n"
16 loops += "\t\t\t\t# self.divide_cell_along_minor_axis(cell)\n"
17 return loops

Listing 26: Function that generates the phenotype update loops. Each cell type has its own
loop to perform this update. It also creates code to append cells that divide to a list, to loop
that list, and call the division method on those cells.

At each time-step the phenotype of the cell may flag that the cell has changed phases

(see Chapter 5 for the definition of phenotype phase), should be removed from the simu-

lation (e.g., because it has died, or migrated), or that it has undergone cell division (either

mitosis or meiosis) [13], see Chapter 5. The translator implements the standard method of

performing cell division in CompuCell3D: dividing cells are appended to a separate list,

and the program loops over that list and calls the division function on each cell.

The translator leaves the implementation of behaviors related to phase change and cell

removal as a task the user should do (this is pointed out by comments in the generated

steppable). The translator doesn’t implement any specific behaviors for this case for a few

reasons. The main reason for not implementing cell removal is that, when using a Cellular

Potts Model, a cluster of cells may misbehave if a cell is outright removed from its center

during a single time-step. Doing so is equivalent to creating a vacuum and can be disruptive

to the simulation. If cells are isolated, on the other hand, this poses no issues. A reason

for not performing any action on phase change is that those are very model specific and the
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translator wouldn’t be able to define a best general approximation.

PhenoCellPy will change internal behaviors (what volume the cell should have, how

fast can it change its volume, should the cell calcify, etc) automatically. Therefore, it is not,

usually, necessary to implement extra behaviors in that case. The user may still want to add

statistics related to phase change, or change other aspects of the simulation or the cell at

that point.

4.7 Results (example translations)

We chose two PhysiCell simulations to translate as proof of concept. We choose these two

simulations for a few reasons, they are available to run online on nanoHUB, they exemplify

important PhenoCellPy concepts, and the level of extra work that has two be done after the

automated translation process is minimal for one of them and extensive for the other.

4.7.1 Cell Cycle

The cell cycle example shows how the cell changes volume during PhysiCell’s ”Flow Cy-

tometry Cell Cycle,” it is available to run online [80]: https://nanohub.org/tool

s/trcycle. It is a very simple simulation, it starts with a single cell placed in the center

of the lattice, and monitors its division. The online version has a few configuration options,

we opted to translate the simplest version. It’s important to note that this simulation doesn’t

specify what units it is using nor what should be its volume (in this case PhysiCell uses a

default volume). Therefore, the translated version also doesn’t have units, and the pixel cell

volume is set to default minimum.

The purpose of this simulation is to show the progression of phases of a PhysiCell

phenotype and how the cell volume changes during the whole cycle. As phenotypes are

key, PhenoCellPy [13] (see Chapter 5) is necessary to run it.
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(a) (b)

Figure 4.3: Translated cell cycle simulation. 4.3a) The cells in the simulation. 4.3b) Color
coded cells based on which phase of the cycle they are in.

This simulation requires minimal extra work. We increased the cell volume and the

simulation domain size to make visualization easier and added trackers for cell volume and

phenotype phase.

Both the original translation and the modified translation are available in the translator’s

github page: https://github.com/JulianoGianlupi/pcxml2cc3d/tree/

9f6c8e7ffc927cd46bbe76f7b56b49d95bbdec41/example-translations/

cell_cycle.

4.7.2 Biorobots

The biorobots [81] simulation does not rely on PhenoCellPy’s phenotypes, it’s goal is to

show mechanics and how simple rules applied to agents can lead to complex behavior. This

simulation has three cell types: director, worker, and cargo. The directors and cargo are

immobile and each secrete a different chemo-attractant. The workers’ goal is to place the

cargo with the director cells, to do so they seek cargo (using the cargo’s chemo-attractant)

and attach to the cargo. Then they switch their chemo-attraction from the cargo chemo-

attractant to the directors’ chemo-attractant. Once they found the director cell they release
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the cargo and switch their chemo-attraction back to be cargo-seeking. Once a cargo cell at-

taches to a worker cell it stops secreting the chemo-attractant [81]. PhenoCellPy’s biorobots

simulation is available to run online https://nanohub.org/tools/pc4biorobo

ts, the biorobot’s landing page has a more detailed description of the simulation.

(a) (b)

(c)

Figure 4.4: Translated biorobots simulation. 4.4a) The color-coded cells (cargo in blue,
workers in red, and directors in yellow). 4.4b) The cargo cells’ chemo-attractant field
levels. 4.4c) The directors’ chemo-attractant field levels.

This simulation requires more extensive post-translation work when compared to the

cell cycle simulation. It has several behavioral rules that need to be applied, the initial cell
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placement is complex, and it requires some CompuCell3D plugins to be included that are

not automatically generated by the translator.

The extra steps needed to finish the biorobots translation are:

• Load the extra plugins: Neighbor Tracker, Focal Point Plasticity, External Potential.

Neighbor Tracker is used to detect cell neighbors and manipulate them, and Focal

Point Plasticity and External potential help the worker cells carry their cargo. Focal

Point Plasticity creates a spring-like energy potential between two cells, External

Potential allows for the use of arbitrary forces on cells.

• Remove the default cell placement and re-create the initial placement from PhysiCell.

Cargo cells are placed in groups of seven, each group is placed in a random empty

space of the simulation. Worker and director cells are placed randomly.

• Re-implement the agent rules from the PhysiCell simulation. E.g., switching the

chemo-attraction of worker cells from one field to the other.

For practicality purposes, the director cells set to be frozen, and when a cargo cell is

delivered the simulation transforms that cargo cell into a director cell (but the previously

cargo cell does not secrete the director chemo-attractant). The cargo attachment to the

worker is done by creating a focal point plasticity link between the work and cargo cells

and, to help the workers pull their cargo, the simulation applies a force to the cargo cell

thqat points towards the center of the worker cell.

The translated simulation time to completion is orders of magnitude higher when com-

pared to the original. The online deployment of the original, running online on limited

resources, finishes the run in 2 minutes. The translated version, running on a Windows

PC with 16 GB of RAM took over 24 hours to finish. This extreme time to completion

was measured after we reduced the simulated domain of the translated simulation from

1837× 1837 pixels to 500× 500 pixels.
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Both the original translation and the modified translation are available in the translator’s

github page https://github.com/JulianoGianlupi/pcxml2cc3d under the

directory ”example-translations/biorobots”.

4.8 Discussion

The development and implementation of the translator for converting PhysiCell simula-

tions to CompuCell3D format is a crucial step in facilitating cross-platform compatibility

and enabling the utilization of simulation models in different computational frameworks.

It successfully converts PhysiCell simulations to CompuCell3D format, demonstrating the

feasibility of converting model definitions from diverse simulation frameworks (Cellular

Potts and center-based). By converting essential information such as simulation parame-

ters, cell types, diffusion and decay constants, and model plugins, the translator ensures

compatibility between the two frameworks. In this study, we presented a detailed descrip-

tion and analysis of the translator, highlighting its key functionalities, challenges encoun-

tered during the conversion process, and solutions to some of the challenges.

The XML file structure employed by PhysiCell simplifies the translation process by

centralizing and easily parsing model information (as of version 1.10.4). This highlights

the potential of XML or similar formats as effective means of general agent-based model

specification.

The successful implementation of the translator offers researchers a valuable tool for

transitioning their PhysiCell simulations to the CompuCell3D framework. By providing

a means to overcome platform-specific incompatibilities and enabling simulation interop-

erability, the translator enhances collaboration and facilitates the exploration of diverse

computational biology models and methodologies.

While the translation process may require some additional implementation steps left to

the user (see Section 4.8.1), the translator performs the majority of the work and gener-

ates a functional simulation. It demonstrates the feasibility and value of creating a general
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agent-based model by successfully translating model definitions across different frame-

works. Moreover, it proves that the endeavor of creating a general agent-based model can

be fruitful and is worthwhile, as it is possible to go from one model definition to a very

different style of definition and model. Therefore, the creation of a general definition is

doable.

We also present what are the likely points of difficulty, namely concepts that are miss-

ing from one platform (e.g., phenotypes in CompuCell3D), differences in simulation scales

(e.g., simulation size, and other platform specific limitations), or the differences in the

dynamics (e.g., adhesion force in PhysiCell and contact energy in CompuCell3D). The im-

plementation of the translator shows possible solutions to those difficulties, such as creating

a general implementation of missing components, like the creation of PhenoCellPy [13],

see Chapter 5.

As a proof of concept and prototype the translator we developed and presented is suc-

cessful in doing the bulk of the translation work for the modeler.

4.8.1 Limitations & Future Work

The translator for converting PhysiCell simulations to CompuCell3D format has certain

limitations that should be acknowledged. These limitations arise from the differences be-

tween the two frameworks and the challenges involved in translating simulation models

across platforms. Some of these limitations were expected and some were identified by

the exercise of building the translator. All of these will most likely also be relevant to the

creation of a universal ABM model specification formalism.

Incomplete Translation: The translation process performed by the translator is not fully

comprehensive and may leave certain implementation steps to be addressed by the user.

For instance, the initial placement of cells is not converted, and a few model components

need to be calibrated by hand.

Platform-Specific Concepts: The translator encounters difficulties when dealing with
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concepts that are specific to one platform but absent in the other. For example, Compu-

Cell3D lacks the notion of phenotypes present in PhysiCell. The creation of PhenoCellPy

has addressed this particular limitation, but it involved a spin-off project. Another example

is the translation of cell adhesion and repulsion, which is not done. We are currently in-

vestigating a method of using an alternative energy term in CompuCell3D for cell contact

as a method to implement PhysiCell’s adhesion and repulsion forces (see Section 4.5.3).

Addressing these differences and finding suitable equivalents or workarounds is essential

for a successful translation and a successful universal model specification standard.

Scale and Limitations: Differences in simulation scales, such as total simulation domain

size, the time-scale of a time-step, the length-scale of the simulation, and number of agents.

The computing requirements of a platform can limit what can be ported from the other

platform. We have performed several adjustments to simulation size, simulation spatial

length (i.e., how many total µm the simulation covers), simulation time-scale, and other

parameters to have a simulation that is capable to run.

Dynamics and Behavior: The dynamics and behavior of the simulation models may

differ between PhysiCell and CompuCell3D (or any other two platforms) due to variations

in underlying algorithms and modeling approaches. Adapting these dynamics to the target

platform may require careful consideration and potential adjustments.

User Responsibility: The translator performs the majority of the work in the translation

process but places some responsibilities on the user. Implementing missing components or

addressing specific platform requirements may require additional effort and expertise from

the user.

Run Time Differences: PhysiCell style simulations are generally faster to run. In CPM,

at each time-step, the dynamics need at least ”number of pixel” calculations of the energy

change to get the pixel move probability (see Section 4.3.1, and Equations 4.2 and 4.5). As

more energy terms are added this calculation becomes more costly. PhysiCell in particular

uses a very well optimized diffusion solver, whereas CompuCell3D uses a simple forward
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Euler solver.

These limitations highlight the complexities and nuances involved in translating sim-

ulation models between different computational frameworks and in building a universal

model specification for ABMs that will work for all platforms and methodologies.

4.8.2 Software requirements

The translator itself is very lightweight and runs in seconds, posing no requirements for

hardware. The only requirements are Python packages that it uses and are not part of

Python’s standard library. They are:

• xmltodict , https://github.com/martinblech/xmltodict,

• autopep8 , https://github.com/hhatto/autopep8 (optional).
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CHAPTER 5

PHENOCELLPY: A PYTHON PACKAGE FOR BIOLOGICAL CELL BEHAVIOR

MODELING

5.1 Introduction

Repeatedly in biology we see stereotyped sequences of transitions between relatively dis-

tinct phases. While such sequences of phases occur at the scale of societies, ecosystems,

animals, organelles, macro-molecular machines, the classical example occurs at the scale

of cells. This paper will primarily discuss sequences of cell phases, but the concepts and

tools developed generalize easily to other biological agents.

A typical example for cells would be the cell cycle, either simplified as proliferation

followed by quiescence (see Section 5.3.2), or in its more complete form of G0/G1 followed

by S, G2, M (Figure 5.1a, see Sections 5.3.4 and 5.3.5). Another example would be a model

of a SARS-CoV-2 infected cell, the cell transitions from an uninfected state (or phase) to

an infected state with no viral release (eclipse phase), then to a virus releasing state, and

finally dies [1] (Figure 5.1b).

For biological systems modeling, it is important to have a structured definition of bi-

ological states, sequences of states, and conditions to go from one state to the next. Ab-

stracting cellular behaviors, or, more generally, biological-agent behavior, into a computer

model requires the modeler to simultaneously understand the biology of interest and the

implementation of that biology in a computational framework. To make modeling more

accessible to biologists we need to simplify the transition from the biological description

to computational implementation.

There are many computational frameworks for modeling multiscale cellular system:

CompuCell3D, Tissue Forge, Morpheus, PhysiCell, Artistoo, FLAME, etc. Currently, each
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(a) (b)

Figure 5.1: Example sequences of cell behaviors. a) Cell cycle. b) Stages of viral infection
of a cell.

modeling framework requires a different type of description of behaviors and behavior tran-

sition triggers, and often do not have a defined standard for basic biological processes like

”cell cycle”. Often implementations of cell, or biological-agent, behaviors are platform-

specific and even modeler-specific. This results in models of cell behaviors that are difficult

to interpret, share and re-use as well as being restricted to the platform they were created in.

This situation makes it difficult to separate the biology being modeled from the framework

it is being modelled in. Ideally, the description of the biology being modeled should be

separate from its algorithmic implementation.

For instance, a model of sequence of cell behaviors built for CompuCell3D [10] of,

e.g., infected cell states [1], can’t be simply copied and re-used as-is in some other plat-

form (e.g., Tissue Forge [82]). The modeler has to back out the underlying conceptual

model of the phases and their transition rules by interpreting the original implementation,

which mixes the biological concepts and the implementing code, and re-code it accord-

ing to the model specification structure in the new platform. This interpretation is time

consuming and subject to many types of error, including misunderstanding of the original

model structure and transition rules, mismapping of model-specific parameter values and
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the possibility of introducing coding errors when the conceptual rules are remapped to code

in the new model specification language.

The PhysiCell [11] package has developed a really elegant way to do this. Phenotypes1

are defined as the sequence of behaviors and are implemented as a class. The different

behaviors that make up a phenotype are called phase. The trigger to go from one phase

to the next can be set to either be deterministic after a set time, or stochastic with a set

rate. The transition can also depend on environmental factors, or on the cell size. We

believe PhysiCell’s approach to phenotypes would be valuable in many other multicellular

model frameworks, e.g., in CompuCell3D [10], and Tissue Forge. Currently PhysiCell’s

implementation of phenotypes is in C++ and is closely linked with the PhysiCell package,

making it difficult to reuse in other modeling frameworks.

PhenoCellPy implements and makes available for general use PhysiCell’s phenotype

functionality in in the form of a Python package. It also makes the process of generating

new phenotypes, phases, and phase change triggers easy. This addresses the issues of lack

of standards and platform specificity, by creating an easy to use and platform-independent

Python package that can be embedded in other models. PhenoCellPy is an open-source

package, its source code is available at its GitHub repository [83]. Although the concepts

and methods of PhenoCellPy are general to many types of biological agents (cells, mito-

chondria, nucleus, certain organelles) it was built with the cell as the focus.

Phenotype here can mean the cell cycle, the sequential stages of necrosis, the fact that

the cell is alive, the fact that it is dead, the different stages of viral infection, etc. Phenotype

is, then, the set of observable characteristics or traits of an organism.

In PhenoCellPy we create methods and Python classes to define cell behaviors, se-

quences of cell behaviors, and rules for the behavior switching. We have built several pre-

packaged models representing phenotypes of cell behaviors to show-case PhenoCellPy’s

capabilities (see Section 5.3).

1Nomenclature in biology is diverse, with several different definitions for the same term. We define what
phenotype and phase mean in the context of PhysiCell and PhenoCellPy in our text.
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An abstract Phenotype consists of one or more Phases (Section 5.2.2), each Phase de-

fines the volume of the cell, and the volume change rates the Phase displays. It also defines

which is the next Phase of the Phenotype, what conditions trigger Phase change, if the agent

should divide when exiting the Phase, what behaviors occur immediately on Phase entry

and just before Phase exit (e.g., changing the target volume). The cell volume dynamics

are handled by the Cell Volume class. The cell volume is subdivided among the solid and

fluid cytoplasm, solid and fluid nucleus, and a calcified fraction.

1 # making an empty list to save the diving cells to

2 dividing_cells = []

3 # looping over all CompuCell3D cells

4 for cell in self.cell_list:

5 # calling PhenoCellPy's time-step and saving the flags returned

6 # from it.

7 # each cell has its own cell dictionary (cell.dict), we have

8 # initialized each

9 # cell's phenotype to cell.dict["phenotype"]

10 changed_phase, should_be_removed, divides = \

11 cell.dict["phenotype"].time_step_phenotype()

12 if changed_phase:

13 # if the phenotype of cell changes phase we call extra tasks

14 # we may have defined on the agent

15 self.phase_change_tasks(cell)

16 if should_be_removed:

17 # if the phenotype returns that the cell should be removed from

18 # the simulation we call CompuCell3D's deletion method

19 self.delete_cell(cell)

20 if divides:

21 # if the phenotype of cell says the cell has divided we add the

22 # cell to the dividing cell list to call CompuCell3D's

23 # division method later

24 dividing_cells.append(cell)

25 # looping over dividing cells

26 for cell in dividing_cells:

27 # calling CC3D's division method on relevant cells

28 self.divide_cell_random_orientation(cell)

Listing 27: Example implementation of continuous PhenoCellPy tasks in CompuCell3D.
Each CC3D cell has its own cell dictionary ( cell.dict ) that can have custom data. We
have saved each cell’s Phenotype to the key ”phenotype” in the dictionary, see Listing 31.
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PhenoCellPy is intended to be used with other python-based modeling frameworks

as an embedded model. A PhenoCellPy phenotype should be attached to each relevant

agent in the main model, then for each main model agent that has a Phenotype the Phe-

notype time-step method should be called at every main model time-step. The Pheno-

type time-step will return boolean flags for cell division, removal from the simulation

(e.g., cell death, migration), and cell division, the user is then responsible for performing

tasks based on those flags. For instance, in the Necrosis Standard CompuCell3D exam-

ple (see online https://github.com/JulianoGianlupi/PhenoCellPy/tre

e/main/CC3D_examples/Necrosis), the CompuCell3D cell changes its cell type

(see [10] for a definition of cell type in CompuCell3D) when changing from the ”hydrop-

ic/osmotic swell”2 Phase to the ”lysed”3 Phase (see Section 5.3.7 for information about the

pre-built necrosis Phenotype). Listing 27 shows a generic implementation of continuous

PhenoCellPy tasks in a CompuCell3D simulation.

We currently have developed and tested PhenoCellPy embedded models in Compu-

Cell3D [10] (CC3D) and Tissue Forge [82] (TF).

5.2 PhenoCellPy Overview

PhenoCellPy makes the construction of new behavior models easy by breaking them into

component parts. The Phenotype class (Section 5.2.3) is the main ”container” of behavior.

It can contain all the stages of infection, all the stages of the cell cycle, all the phases of

necrosis, etc. The Phenotype is broken down into component phases, represented by the

Phase class (Section 5.2.2). The Phase class contains more specific behaviors, e.g., osmotic

swelling (necrosis), cell rupture, volume decrease during apoptosis. The Phase class also

defines what should be the volume change rates, and what is the trigger for Phase change.
2see BioPortal’s ontology definition for hydropic https://bioportal.bioontology.org/on

tologies/PATO?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fob
o%2FPATO_0002119

3see BioPortal’s ontology definition for lysed https://bioportal.bioontology.org/onto
logies/PATO?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%
2FPATO_0065001
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Finally the cell volume dynamics are handled by the Cell Volume class (Section 5.2.1).

Figure 5.2 shows schematics of how PhenoCellPy is organized.

Figure 5.2: How PhenoCellPy is organized.Gray boxes are PhenoCellPy classes, the blue
trapezoid is the lists of constituent Phases. Ownership of objects is conveyed through
overlaying shapes (e.g., the Phenotype owns the list of Phases, the Phase owns the Cell
Volume). Yellow arrows indicate sequence in the list of Phases. Any Phase could go to any
other Phase, as dictated by the modeler. A Phase can have exits to any number of Phases,
and a Phase can have entrances from multiple Phases.

We will now briefly describe how to use each class and give an overview of how they

work. Starting with the Cell Volume class and working our way up to the Phenotype class.

In Section 5.2.4, we give a brief example of PhenoCellPy’s use. For further detail on how

PhenoCellPy is implemented in Python see Supplemental Materials C.1.

5.2.1 Cell Volume Class

The Cell Volume class defines how big the simulated cell is and how much of its volume

is taken by the nucleus and cytoplasm. It also separates the cellular volume into fluid and

solid fractions, and has a concept of a calcified volume fraction. All the volumes and

fractional volumes we define, as well as volume change rates are in Table 5.1. The user of

PhenoCellPy should decide if the different volumes should be explicitly included in their

model, or if they will use only the cytoplasm and nuclear volumes (without a distinction

of solid and fluid fraction), or, simply, the total cell volume. The default volumes used by

PhenoCellPy are from MCF-7 cells [84] in cubic microns.

The volume dynamics model works by relaxing the dynamic volumes (marked with ∗ in

Table 5.1) to their target volumes using their respective volume change rates with a system
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of ODEs (Equations 5.1). Then the other volumes are set as relations of the dynamic

volumes. It is important to note that, while the volumes and target volumes are attributes

of the Cell Volume class, the volume change rates are not, they are an attribute of the Phase

class. We made this separation because how fast a cell changes its volume is a property

of its state (Phase in PhenoCellPy), therefore the change rates are an attribute of the Phase

class. Equations 5.1 show ODE system governing the dynamic volumes, in those equations

the superscript tg denotes target. Equations 5.2 show how the other volumes are calculated

from the dynamic volumes and each other.

dVF
dt

= rF (f tg
F × V − VF ) , (5.1a)

dVNS

dt
= rNS(V

tg
NS − VNS) , (5.1b)

dVCS

dt
= rCS(f

tg
CN × VNS − VCS) , (5.1c)

dfC
dt

= rC (1− fC) . (5.1d)

VNF = fF × VN , (5.2a)

VCF = VF − VNF , (5.2b)

VS = VNS + VCS , (5.2c)

VN = VNS + VNF , (5.2d)

VC = VCS + VCF , (5.2e)

V = VN + VC , (5.2f)

fF = VF/V , (5.2g)

fCN = VC/VN . (5.2h)
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Note that Equation 5.1d implies that the target calcified fraction is always 1, we are adopt-

ing this default behavior from PhysiCell [11]. For most Phases predefined in PhenoCellPy

the calcification rate is zero.

Volume type Symbol Change Rate Symbol
Total V Fluid rF

Total Nuclear VN Nuclear Solid rNS

Nuclear Solid V ∗
NS Cytoplasm Solid rCS

Nuclear Fluid VNF Calcified Fraction rC
Total Cytoplasm VC
Cytoplasm Solid V ∗

CS

Cytoplasm Fluid VCF

Cytoplasm to
nuclear ratio fCN

Total Fluid V ∗
F

Fluid Fraction fF
Calcified
Fraction f ∗

C

Table 5.1: Volumes and volume change rates defined by the Cell Volume class. Volumes
marked with ∗ are the dynamic volumes.

Figure 5.3 shows the Cell Volume class attributes and functions. It also schematizes

how the volume update function works. It uses the volumes attributes from the Cell Volume

class together with the volume change rates passed to it by the Phase class to update the

volumes of the Cell Volume class.

5.2.2 Phase Class

The phase is the ”base unit” of the phenotype. It defines volume change rates, checks for

Phase change, and performs phase-specific tasks on phase entry, phase exit and during each

time-step.

The phase change check and phase specific tasks are user-definable functions. For flex-

ibility, we impose that all user-definable functions must be able to take any number of

arguments as inputs (i.e., be a Python *args function). Otherwise, the way PhenoCellPy

calls those functions would have to change as the number of arguments changes. The user
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(a) Cell Volume class attributes and functions

(b) Cell Volume time-step

Figure 5.3: Cell Volume class attributes and functions (5.3a), and Cell Volume update
volume (5.3b). The Cell Volume update is highlighted by the black outline. Gray boxes are
PhenoCellPy classes, yellow rectangles are functions being called, blue parallelograms are
information being passed to/from functions, green diamonds are decisions. Yellow arrows
mean function call, blue arrows are information being passed.
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can define their function is such a way that the *args are unused or unnecessary. Our

default transition functions and entry/exit functions functions do not use the args. For Phe-

noCellPy’s alpha version the modeler is responsible for defining, transferring and updating

the arguments, creating interface APIs to facilitate this will be included with PhenoCellPy

by release.

Examples of phase specific tasks are doubling the target volumes when entering the

proliferating Phase (see Sections 5.3.2 and 5.3.3), or halving the target volumes after di-

vision. In-Phase tasks could be checking if the quantity of a nutrient a cell has access to.

Figure 5.4a shows the Phase class attributes and functions, and Figure 5.4b the flowchart

for the Phase class time-step.

5.2.2.1 Phase transition

PhenoCellPy has two pre-defined transition functions that are used by our pre-built models,

the deterministic phase transition and the stochastic phase transition. For the deterministic

transition the Phase evaluates if the time spent in this Phase (T ) is greater than the Phase

period (τ ), Equation 5.3. For the stochastic case we draw a probability from a Poisson

distribution for a single event occurring (Equation 5.4). The Poisson probability depends

on the time-step length (dt) and expected Phase period (τ ). We cannot approximate 1 −

e−dt/τ ≈ dt/τ in Equation 5.4, as we don’t know what values of dt and τ the modeler will

use.

P (A→ B) =


1 if T > τ

0 else
. (5.3)

P (A→ B) = 1− e−dt/τ . (5.4)

The user can define their own transition functions that may depend on any number of

simulation parameters, e.g., oxygen levels, having a neighboring cell, signaling molecules.
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(a) Phase class attributes and functions

(b) Phase time-step

Figure 5.4: Phase class attributes and functions (5.4a), and Phase time-step flowchart
(5.4b). The time-step function is highlighted by the black outline, the order in which it
performs operations is overlayed on the arrows. Gray boxes are PhenoCellPy classes, yel-
low rectangles are functions being called, blue parallelograms are information being passed
to/from functions, yellow diamonds are decision-making functions. Yellow arrows mean
function call, blue arrows are information being passed.
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One of our CompuCell3D [10] examples uses a custom transition function, Ki-67 Basic

Cycle Improved Division (Section 5.4.1.1), to ensure cells don’t divide early. The custom

transition function checks that the in-simulation volume of the simulated cell has reached

the doubling volume, Equation 5.6.

If the Phase can transition to several Phases (instead of just one), the user can use the

transition function to select which Phase to go to.

5.2.3 Phenotype Class

The Phenotype is the main concept of PhenoCellPy, in PhenoCellPy ”Phenotype” means

any sequence of distinct cell behaviors. For instance, a quiescent-proliferating cell cycle

is a phenotype with two phases (quiescence, and growth/division); the necrotic phenotype

starts with a osmotic swelling phase, followed by dissolution of the cell after it bursts.

PhenoCellPy supports cyclical and acyclical Phenotypes, as well as Phenotypes with an

arbitrary sequence of Phases. To facilitate a Phenotype end-point we have defined a method

to exit the Phenotype cycle and go into a special senescent Phase. To make use of this

functionality, the modeler has to define the optional arrest function which is a member of

the Phase class (Section 5.2.2). The arrest function is called by the Phase time-step function

(Appendix C.1.1.2) and its return value is used by the Phenotype time-step function to exit

the Phenotype cycle.

The Phenotype class owns the list of all Phases that make it. It switches Phases or goes

to the senescent Phase when it receives the respective signals from the Phase time-step,

and performs specific user-defined Phenotype tasks each time-step. Figure 5.5a shows the

Phenotype class attributes and functions, and Figure 5.5b the flowchart for its time-step.

5.2.4 Using PhenoCellPy

PhenoCellPy’s intended use is as an embedded model, meaning it should be loaded into

some other modeling platform, e.g., CompuCell3D [10], Tissue Forge [82]. CompuCell3D

131



(a) Phenotype class attributes (green box) and functions (yellow box).

(b) Phenotype time-step

Figure 5.5: Phenotype class attributes and functions (5.5a), and Phenotype time-step
flowchart (5.5b). The time-step function is highlighted by the black outline, the order
in which it performs operations is overlayed on the arrows. Purple hexagon represents the
model PhenoCellPy is embedded in (i.e., the main model), the gray pentagon is an agent
from the main model. Gray boxes are PhenoCellPy classes, yellow rectangles are functions
being called, blue parallelograms are information being passed to/from functions, green
diamonds are decisions. Yellow arrows mean function call, blue arrows are information
being passed.
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already supports other modeling frameworks as embedded models, namely SBML [12],

Antimony [85], and MaBoSS [86].

To use PhenoCellPy, the modeler has to import PhenoCellPy and should initialize a

Phenotype object at the simulation start. The Phenotype initialization (in the version of the

package at time of writing) takes as arguments:

• The phenotype name

• Time-step length (dt)

• Time and space units

• The list of Phases that make the Phenotype

• Lists for the Phases’ target volumes, initial volumes, volume change rates

• The initial volume of the simulated cell

• The starting Phase index

• The senescent Phase

• User-defined Phenotype time-step tasks and initial arguments for them

• List of user-defined phase time-step tasks and initial arguments for them

All arguments, except the time-step period, for Phenotype initialization are optional. List-

ing 28 show the import and initialization of a pre-built Phenotype.

1 # importing PhenoCellPy

2 import PhenoCellPy as pcp

3 # defining the time-step period for pcp

4 dt = 1

5 # initialing a phenotype and saving it to a handle

6 ki67_basic = pcp.phenotypes.Ki67Basic(dt=dt)

Listing 28: Initialization of a pre-built Phenotype using the default argument values explic-
itly.
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5.2.4.1 Initialization

1 import PhenoCellPy as pcp

2 dt = .1 # min, defining the time-step

3 # defining the 1st Phase and setting its parameters

4 stable_phase_0 = pcp.phases.Phase(index=0,

5 previous_phase_index=-1, next_phase_index=1,

6 dt=dt, name="stable0", division_at_phase_exit=False,

7 removal_at_phase_exit=False, fixed_duration=True,

8 phase_duration=10)

9 # defining the custom transition function for the 2nd phase

10 def grow_phase_transition(*args):

11 # grabbing arguments for clarity

12 volume = args[0]

13 doubling_volume = 0.8 * args[1] # we use a bit less than the

14 # doubling volume to guarantee a transition

15 time_phase = args[2]

16 phase_duration = args[3]

17 # checking for transition

18 return volume >= doubling_volume and time_phase > phase_duration

19 # 2nd Phase, initial args that will fail the check as a safe-guard

20 grow_phase = pcp.phases.Ki67Positive(index=1,

21 previous_phase_index=0, next_phase_index=2,

22 dt=dt, name="grow", fixed_duration=True,

23 phase_duration=50, entry_function=None,

24 entry_function_args=[None],

25 check_transition_to_next_phase_function=\

26 grow_phase_transition,

27 check_transition_to_next_phase_function_args=\

28 [0, 9, 0, 9])

29 # defining the 3rd Phase

30 stable_phase_1 = pcp.phases.Phase(index=2,

31 previous_phase_index=1, next_phase_index=3,

32 dt=dt, name="stable1", fixed_duration=True,

33 phase_duration=5)

Listing 29: Initialization of a custom Phenotype. Part 1.
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1 # defining the custom transition function for the 4th phase

2 def shrink_phase_transition(*args):

3 # saving the arguments to variables for clarity

4 dt = args[0]

5 phase_duration = args[1]

6 total = args[2]

7 total_target = args[3]

8 # doing the transition checks. Stochastic and volume repectively

9 time_check = np.random.uniform() < \

10 (1 - np.exp(-dt / phase_duration))

11 volume_check = total <= 1.1 * total_target

12 return time_check and volume_check

13 # 4th phase, we use initial args that will fail the check as a safe-guard

14 shrink_phase = pcp.phases.Ki67PositivePostMitotic(index=3,

15 previous_phase_index=2, next_phase_index=0,

16 dt=dt, name="shrink", phase_duration=100,

17 entry_function=None, entry_function_args=[None],

18 check_transition_to_next_phase_function= \

19 shrink_phase_transition,

20 check_transition_to_next_phase_function_args= \

21 [0, 1, 99, 0])

22 # defining the phenotype

23 custom_phenotype = pcp.Phenotype(name="oscillate volume with rests",

24 dt=dt,

25 time_unit="min", space_unit="micrometer",

26 phases= \

27 [custom_p0, custom_p1,

28 stable_phase_1, shrink_phase],

29 senescent_phase=False, starting_phase_index=0,

30 user_phenotype_time_step=None,

31 user_phenotype_time_step_args=[None, ])

Listing 30: Initialization of a custom Phenotype. Part 2.

A user can also define their own Phenotype, to do so they have to initialize each con-

stituent Phase of the Phenotype and pass them as a list to the Phenotype object initializa-

tion. Listing 29 and 30, shows an example of a custom Phenotype being built, some of the

Phases use custom transition functions. The example in Listing 29 and 30 only passes the

necessary attributes to the classes.

After having initialized the Phenotype the user has to attach it to each agent that will
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use that Phenotype. How to do this attachment is modeling platform dependent, in Compu-

Cell3D the recommended method is to make the Phenotype a cell dictionary (Listing 31),

we have created an utility function that does this (Listing 32). In Tissue Forge recom-

mended method is to have a dictionary with cell ids as keys and Phenotype as items (List-

ing 33).

1 # looping over CC3D cells

2 for cell in self.cell_list:

3 # adding a phenotype to the cell dictionary

4 cell.dict["phenotype"] = ki67_basic.copy()

Listing 31: Attaching a Phenotype to a CompuCell3D cell. Listing 28 shows the phenotype
initialization.

1 # looping over CC3D cells

2 for cell in self.cell_list:

3 # adding a phenotype to the cell using the utility function

4 pcp.utils.add_phenotype_to_CC3D_cell(cell, ki67_basic)

Listing 32: Attaching a Phenotype to a CompuCell3D cell using PhenoCellPy’s utility
function. Listing 28 shows the phenotype initialization.

1 # creating an empty dictionary to keep the phenotypes in

2 cells_phenotypes = {}

3 # looping over TF agents of type Cell

4 for cell in Cell.items():

5 # adding the phenotype to the dictionary using the cell id as key

6 cells_phenotypes[f"{cell.id}"] = ki67_basic.copy()

Listing 33: Attaching a Phenotype to a Tissue Forge cell. Listing 28 shows the phenotype
initialization.
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5.3 Pre-defined Phenotypes

PhenoCellPy comes with several pre-packadged Phenotypes defined. As with the Methods

Section (Section 5.2), we’ve removed most docstrings and comments from code presented

in this Section.

5.3.1 Simple Live Cycle

Simplest Phenotype defined, it is a cell-cycle Phenotype of one single Phase. The transition

from one Phase to the next (which is the same Phase) is stochastic with an expected duration

of ≈ 23h, the expected cycle time for a MCF-10A cell line cell [87].

5.3.2 Ki-67 Basic

The Ki-67 Basic is a two Phase cell-cycle phenotype, it matches experimental data that

uses Ki-67, a protein marker for cell proliferation [88]. A cell with a positive Ki-67 marker

is in its proliferating state, if there’s no Ki-67 it is in quiescence.

The quiescent Phase (Ki-67 negative) uses an expected Phase duration of 4.59h, transi-

tion from this Phase is set to be stochastic. The proliferating Phase (Ki-67 positive) uses a

fixed duration (i.e., the transition is deterministic) of 15.5h. We utilize the same reference

values for Phase durations as PhysiCell [11].

5.3.3 Ki-67 Advanced

Ki-67 Advanced adds a post-mitosis Phase to represent the time it takes Ki-67 to degrade

post cell division. The proliferating Phase and Ki-67 degradation Phase are both determin-

istic, with durations of 13h and 2.5h, respectively. The quiescent (Ki-67 negative) Phase

uses the stocastic transition, with an expected duration of 3.62h. Again, we utilize the same

reference values for Phase durations as PhysiCell [11].
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5.3.4 Flow Cytometry Basic

Flow Cytometry Basic is a three Phase live cell cycle. It represents the G0/G1 → S →

G2/M → G0/G1 cycle. The G0/G1 phase is more representative of the quiescent phase

than the first growth phase, as no growth occurs in this Phase. The Phenotype transitions

stochastically from this phase, its expected duration is 5.15h. The S phase is the phase

responsible for doubling the cell volume, transition to the next phase is stochastic, its ex-

pected duration is 8h. The cell volume growth rate is set to be [total volume growth]/[phase

duration]. The G2/M is the pre-mitotic rest phase, the cell divides when exiting this phase.

Transition to the next phase is stochastic, its expected duration is 5h. Reference phases

durations are from ”The Cell: A Molecular Approach. 2nd edition” [89].

5.3.5 Flow Cytometry Advanced

Flow Cytometry Advanced is a four Phase live cell cycle. It represents the G0/G1 → S →

G2 →M → G0/G1 cycle. The behaviors The mechanics of the Phases are the same as in

Flow Cytometry Basic (Section 5.3.4) with an added rest Phase (the separation of G2 from

M ). All Phase transitions are stochastic, and their expected durations are: 4.98h, 8h, 4h,

and 1h, respectively. Cell division occurs when exiting Phase M .

5.3.6 Apoptosis Standard

Apoptosis Standard is a single Phase dead Phenotype. The cell in this Phenotype sets

V tg
NS = 0, f tg

CN = 0, and fF = 0 on Phase entry. By doing this, the cell will di-

minish in volume until it disappears, the rate used for the cytoplasm reduction is rCS =

1/60 µm3/min, for the nucleus it is rNS = 0.35/60 µm3/min, and the fluid change rate

is rF = 3/60 µm3/min, volume change rates reference values from [90, 91]. This Phe-

notype Phase uses a fixed duration of 8.6h, the simulated cell should be removed from the

simulation domain when the Phase ends.
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5.3.7 Necrosis Standard

Necrosis Standard is a two Phase dead Phenotype. The first phase represents the osmotic

swell of a necrotic cell, it doesn’t have a set or expected phase duration, instead it uses a

custom transition function that monitors the cell volume and transition to the next phase

happens when the cell total volume (VT ) reaches its rupture volume (VR), set to be twice

the original volume by default, see Equation 5.5 and Listing 34. On Phase entry, the solid

volumes targets are set to zero (i.e., V tg
CS = V tg

NS = 0µm), the target fluid fraction is set

to one (f tg
F = 1), and the target cytoplasm to nuclear ratio is set to zero (f tg

CN = 0).

These changes cause the cell to swell. The rates of volume change are: solid cytoplasm

rCS = 3.2/60 × 10−3 µm3/min, solid nucleus rNS = 1.3/60 × 10−2 µm3/min, fluid

fraction rF = 6.7/60× 10−1 µm3/min, calcified fraction rC = 4.2/60× 10−3 µm3/min.

The second Phase represents the ruptured cell, it is up to the modeler and modeling

framework how the ruptured cell should be represented. For instance, in Tissue Forge [82]

the ruptured cell should become several fragment agents, whereas in CompuCell3D [10]

the fragmentation can be achieved by setting the ruptured cell contact energy with the

medium to be negative. The cell fragments shrink and dissolve into the medium. As a

safeguard, this Phase uses a deterministic transition time of 60 days, after which the frag-

ments are flagged for removal. On Phase entry all target volumes are set to zero. The

volume change rates are: solid cytoplasm rCS = 3.2/60 × 10−3 µm3/min, solid nucleus

rNS = 1.3/60 × 10−2 µm3/min, fluid fraction rF = 5/60 × 10−1 µm3/min, calcified

fraction rC = 4.2/60× 10−3 µm3/min.

P (Swelling → Ruptured) =


1 if VT > VR

0 else
. (5.5)
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1 def _necrosis_transition_function(self, *none):

2 """

3 Custom phase transition function. The simulated cell should only

4 change phase once it bursts (i.e., when its volume is above the

5 rupture volume), it cares not how long or how little time it

6 takes to reach that state.

7

8 :param none: Not used. This is a custom transition function,

9 therefore it has to have args, i.e., the function implements

10 the PhenoCellPy interface

11

12 :return: Flag for phase transition

13 :rtype: bool

14 """

15 return self.volume.total > self.volume.rupture_volume

Listing 34: Necrotic Standard’s osmotic swelling Phase transition function.

5.4 Selected Examples

5.4.1 CompuCell3D

For CompuCell3D [10] the reccomended method of using PhenoCellPy is to initialize the

Phenotype in the steppable start function, and add it as a cell dictionary entry (see List-

ing 31). Then, in the steppable step function, loop over cells that have a Phenotype model,

call the Phenotype time-step, and use the time-step return values as needed (see Listing 27).

See CompuCell3D’s manual [79] for more information on steppables, cell dictionaries,

and other CompuCell3D concepts.

5.4.1.1 Ki-67 Basic Cycle Improved Division

The stock Ki-67 Basic Cycle causes CompuCell3D cells to behave in non-biological ways.

This happens because Cellular Potts Model [7] (CompuCell3D’s paradigm) cells are made

of several voxels [10], and the proliferating Phase of Ki-67 has a set period. This means

that the simulated cells in CompuCell3D may not grow to the doubling volume before they
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are flagged for cell division. This means that the median cell volume of the cells in the

simulation decreases.

Ki-67 Basic Cycle Improved Division fixes this by defining a custom transition func-

tion, see Listing 35. It still is a deterministic transition function, however, in addition of

monitoring T (time spend in phase), it also monitors the simulated cell volume (VS) and

checks if it is bigger than the doubling volume (VD). The custom transition function eval-

uates the transition probability as,

P (division) =


1 if T > τ ∧ VS ≥ VD

0 else
. (5.6)

The full implementation of this example is in Supplemental Materials C.4.

1 def Ki67pos_transition(*args):

2 # args = [cc3d cell volume, phase's target volume, time in

3 phase, phase duration

4 return args[0] >= args[1] and args[2] > args[3]

Listing 35: Ki-67 Basic Cycle Improved Division transition function

5.4.2 Tissue Forge

For Tissue Forge [82] the suggested method of using PhenoCellPy is to initialize the Phe-

notype in a similar way to Tissue Forge’s cell initialization, keep a dictionary of agent IDs

as keys and Phenotype models as values, and create a Tissue Forge event [82] to time-step

the Phenotype objects. A generic implementation of PhenoCellPy within Tissue Forge can

be found in Listing 36 and 37. Supplemental Information C.5 shows the implementation of

the Ki-67 Basic Cycle Phenotype.
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1 import numpy as np

2 import tissue_forge as tf

3 import PhenoCellPy as pcp

4 # dimensions of universe

5 dim = [10., 10., 10.]

6 # new simulator

7 tf.init(dim=dim)

8 # defining the inter-cell potential

9 pot = tf.Potential.morse(d=3, a=5, min=-0.8, max=2)

10 # define Cell class

11 mass = 40

12 class CellType(tf.ParticleTypeSpec):

13 mass = mass

14 target_temperature = 0

15 radius = radius

16 dynamics = tf.Overdamped

17 # initialize cell

18 Cell = CellType.get()

19 # bind the potential with the *TYPES* of the particles

20 tf.bind.types(pot, Cell, Cell)

21 # uniform random cube

22 positions = np.random.uniform(low=0, high=10, size=(10, 3))

23 # place cells at the positions

24 for pos in positions:

25 Cell(pos)

26 # initialize Phenotype

27 ki67_basic = pcp.phenotypes.Ki67Basic(dt=dt)

28 # Pair the cells ids with the Phenotype model

29 global cells_cycles

30 cells_cycles = {}

31 for cell in Cell.items():

32 cells_cycles[f"{cell.id}"] = ki67_basic.copy()

Listing 36: Generic implementation of PhenoCellPy within Tissue Forge. Part 1
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1 # Defining the Phenotype stepping event

2 def step(event):

3 for cell in Cell.items():

4 pcycle = cells_cycles[f"{cell.id}"]

5 pcycle.current_phase.simulated_cell_volume = p.mass * density

6 phase_change, removal, division = pcycle.time_step_phenotype()

7 if phase_change:

8 phase_change_tasks(cell)

9 if removal:

10 removal_tasks(cell)

11 if division:

12 division_tasks(cell)

13 other_tasks(cell)

14 return 0

15 # running the time-stepping event every time-step

16 tf.event.on_time(invoke_method=step_cycle_and_divide,

17 period=.9*tf.Universe.dt)

18 # run the simulator interactive

19 tf.run()

Listing 37: Generic implementation of PhenoCellPy within Tissue Forge. Part 2
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5.5 Selected Results

In this section, we will present selected results from some of the pre-built CompuCell3D

and Tissue Forge examples.

5.5.1 CompuCell3D

5.5.1.1 Ki-67 Basic Cycle

(a) (b) (c)

(d)
(e)

Figure 5.6: Spatial figures for the CompuCell3D simulation using the regular Ki-67 Basic
cycle. a, b, and c) shows the cell cluster with no color overlay. They show the cluster at the
start of the simulation, step 2000 and step 4000 respectively. d) Zoom in on the center of
image c. e) Color coded cells based on the phase they are in, green for the quiescent phase
and red for the proliferating phase. Step 2800.

We ran the regular Ki-67 Basic cycle (see Section 5.3.2) and compared it to the Ki-

67 Basic cycle improved division (see Section 5.4.1.1) in CompuCell3D. The simulation

here is 2D. In this simulation we start with single cell with a volume of 100 pixels (the
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pixel to µm conversion is set to 24.94µm/pixel), therefore they should reach 200 pixels

before division. We are using a time-step of 5min/step, the usual name for the time-step in

CompuCell3D, for historical reasons, is Monte-Carlo Step (MCS). With the regular cycle

We see that the median and minimum cell volumes go down in time (Figure 5.7b), that

happens because the mitotic phase transition happens after a set amount of time no matter

the cell volume. As cells grow slowly in CompuCell3D they end up being halved before

reaching their doubling volume. We see that this effect is worse towards the center of the

cell cluster (see Figure 5.6d), as those cells don’t have room to grow at all. In Figure 5.6d

we can see that many cells are only a few pixels big. We also see that the spatial phase

distribution is random in space (see Figure 5.6e).

In contrast, when using the modified transition we account for the simulated cell vol-

ume. Now the reduction in the median volume is small and happens due to overcrowding

and cells pushing each other, and that the total population growth was much smaller (3800

cells at step 4000, see Figure 5.9a, versus 19000, see Figure 5.7a). We do not see overly

small cells (see Figure 5.6d). We also see that cells towards the center of the cell cluster

stay in the proliferating phase (see Figure 5.8e), unable to reach their doubling volume and

divide.

5.5.1.2 Necrosis standard

We ran the necrotic phenotype in a 2D CompuCell3D simulation, we simulate 170 cells

plated in a petri dish. We select ten of those cells to undergo necrosis. We keep the initial

volume of the cells 100 pixels (with the same pixel to µm relation) and the same time-step

duration of 5min/step. The necrotic cells increase in volume linearly (see Figure 5.11)

during the hydropic (osmotic) swell phase until they reach their bursting volume. After

bursting (see Figure 5.10) their volume decreases rapidly at first, going near zero almost im-

mediately, and then keeps decreasing more slowly (see Figure 5.11). This happens because

the PhenoCellPy model sets the target volume of the cell to 0 when entering the ruptured
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(a)

(b)

Figure 5.7: Statistics for the cell population in CompuCell3D using the standard Ki-67
Basic cycle. a) Total cell population. b) Cell population volume statistics. Maximum cell
volume in red, median in yellow, and minimum in blue.
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(a) (b) (c)

(d)
(e)

Figure 5.8: Spatial figures for the CompuCell3D simulation using the regular Ki-67 Basic
cycle. a, b, and c) shows the cell cluster with no color overlay. They show the cluster at the
start of the simulation, step 2000 and step 4000 respectively. d) Zoom in on the center of
image c. e) Color coded cells based on the phase they are in, green for the quiescent phase
and red for the proliferating phase. Step 3200.
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(a)

(b)

Figure 5.9: Statistics for the cell population in CompuCell3D using the modified Ki-67
Basic cycle. a) Total cell population. b) Cell population volume statistics. Maximum cell
volume in red, median in yellow, and minimum in blue.
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(a) (b)

(c) (d)

Figure 5.10: Snapshots of the CompuCell3D simulation for the necrotic phenotype,
necrotic cells in green, healthy cells in blue, fragmented cells in red. a) simulation start.
b) Necrotic cells at maximum volume. c) Moment the necrotic cells bursts. d) end of the
simulation.
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phase, however, CompuCell3D works by minimizing the energy of the system, and the

cell fragments have a negative contact energy with the medium (see CompuCell3D’s [10]

manuals for a definition of the contact energy).

Figure 5.11: Necrotic cells volumes evolution in time. Each necrotic cell volume is plotted
individuality

5.5.2 Tissue Forge

5.5.2.1 Ki-67 Basic Cycle

For the Tissue Forge Ki-67 Basic Cycle simulation we used a time-step duration of 10

min/step, as Tissue Forge is off-lattice we don’t need a space conversion factor. This simu-

lation is 3D, and we see that the cell cluster at the center (see Figure 5.12).

Unlike in CompuCell3D , cells in Tissue Forge are soft spheres and can reach their

desired volume almost instantly. Therefore, we don’t need the modification to the division

transition. The median and minimum cell volume stay steady (see Figure 5.13b). The

median cell volume stays close to the maximum cell volume (see Figure 5.13b) because the
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(a) (b) (c)

Figure 5.12: Cells space configuration in the Tissue Forge Ki-67 Basic cycle model. a)
Simulation start. b) Day 7. c) Day 15 (simulation end).

cells double in volume very fast in Tissue Forge, the cells then stay at their doubling volume

until the phase duration has transpired. As before, the population growth is exponential (see

Figure 5.13a).

(a) (b)

Figure 5.13: Cell population statistics for the Tissue Forge model using PhenoCellPy’s Ki-
67 Basic Cycle phenotype. a) Total cell population. b) Cells’ volume statistic.
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5.6 Discussion

The PhenoCellPy’s embedded modeling package allows modelers to easily create sequences

of cell behaviors and attach them to agent in agent-based models. PhenoCellPy is acces-

sible, intuitive and enables modelers to add complexity to their model without much over-

head. It implements several biological concepts, such as how to switch from one behavior

to the next, how the different volumes of the cell should be modeler (e.g., cytoplasmic and

nuclear), and makes sure time-scales are respected. PhenoCellPy also makes the creation

of new behaviors and sequences of behaviors easy.

PhenoCellPy is open-source and freely available under the BSD 3-Clause License

(https://github.com/JulianoGianlupi/PhenoCellPy/blob/main/LIC

ENSE).

5.6.1 Installation

PhenoCellPy’s alpha version does not have any installer. To use it you should clone or

download its GitHub repository [83] and add its folder to the simulation’s system path.

E.g., see Listing 38.

1 import sys

2 sys.path.extend(['C:\\PhenoCellPy_Dowload_Folder',

3 'C:/PhenoCellPy_Dowload_Folder'])

Listing 38: How to add PhenoCellPy to the simulation’s system path.

5.6.2 Planned features

We currently have these planned features:

• Interface (API) classes for CompuCell3D and Tissue Forge

• Template interface classes
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• Automatic inter-cell heterogeneity [2]

• Randomization of the initial Phase of the Phenotype

• Conda or pip distribution

• API for environment interaction (e.g., detection of oxygen levels in the environment,

detection of neigboring cells)

• ”Super-Phenotypes,” phenotypes made from more than one Phenotype class, and

methods for switching between them

5.6.3 Requirements

PhenoCellPy only requirements, besides Python 3 support, are that NumPy and SciPy be

available inside the modeling framework PhenoCellPyis embedded in.
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CHAPTER 6

DISCUSSION

. I’ve helped the field with my cross-platform work, my translator serves as a proof of

concept that it is possible to create a unified model specification for ABMs, simmilarly

to what is done for population dynamics, metabolic networks, cell signaling pathways,

pharmacological models, etc., through SBML [12]. This discussion chapter aims to provide

a overview of the findings, explore their significance, and discuss their implications in the

context of the broader field of research.

Firstly, it is crucial to highlight the major findings of my research. The results obtained

from the developed agent-based models elucidated the complex dynamics of COVID-19

at the cellular level, offering valuable insights into the interplay between viral infection,

immune response, and treatment interventions. The models effectively captured the spatial

and temporal dynamics of viral spread within cell populations and what are key parameters

that can explain the variability of patient outcomes in a, naive, first infection with SARS-

CoV-2 (see Chapter 2). I also successfully integrated more traditional PK-PD/PBPK mod-

els with our COVID-19 model, and indicated which questions this combination can ask

that a pure PK-PD/PBPK cannot (Chapter 3). In particular, ”what are the effects of cell in-

dividuality and heterogeneity on a pro-drug treatment?” I also posed some possible sources

of cell individuality, e.g., cell age, cell distance from capillaries. Exploring these possible

sources and their precise effect can help future drug development.

The outcomes of these studies have significant implications for both the field of compu-

tational biology and the understanding of COVID-19 dynamics. By developing mechanistic

models that integrate cellular behaviors, microenvironmental factors (e.g., cell heterogene-

ity), and treatment interventions, this research contributes to a more comprehensive under-

standing of the disease. The insights gained from these models can inform evidence-based

154



decision-making in the development of therapeutic strategies, public health interventions,

and drug discovery efforts.

My PhysiCell to CompuCell3D translation software is successful. The translation pro-

cess successfully transferred the fundamental components of the models, while preserving

key model behaviors. It showed what will be the difficult areas for a hypothetical general

modeling specification for ABMs, both predicted areas and new ones. For instance, con-

cepts that exist in one platform but not in the other (phenotypes), differences in scale limits,

run time differences.

PhenoCellPy successfully implements phenotype models in a way that can be widely

adopted and is easy to use. As it is a Python package it can be imported by any other

Python software, and there are established methods to interface with Python from other

programming languages. After we make PhysiCell available as a conda package we expect

it will see widespread adoption. PhysiCell will also make models more generaly available

cross-platform, as a phenotype defined using PhenoCellPy for one particular model can be

imediatly used in other models in any Python-supporting platform.

In conclusion, my Ph.D. work has demonstrated the effectiveness of agent-based mod-

els in elucidating the mechanistic underpinnings of COVID-19 and anti-viral treatments.

The cross-platform translation and validation of these models have paved the way for en-

hanced collaboration, model interoperability, and knowledge exchange within the scientific

community. The findings contribute to the growing body of research on computational bi-

ology and provide a foundation for future investigations into the modeling of human health

and disease that will eventually be a human-health digital twin.

6.1 Other Infrastructure Work

My work making bio-ABM more available and shareable began before building the trans-

lator and PhenoCellPy. Since the start of my Ph.D. I have been involved with nanoHUB.

nanoHUB is an online platform that provides access to a wide range of nanotechnology-
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related resources and tools. It is a collaborative effort that aims to facilitate research, edu-

cation, and collaboration in the field of nanotechnology. nanoHUB provides a platform for

researchers to share their work, users can upload and publish their own tools, resources,

and research findings, fostering knowledge exchange and collaboration. This is specially

useful for journal publication of models. Instead of asking the referees and reader to down-

load your model and the software it runs in, you can deploy the model online and link to

it from the publication. nanoHUB is also useful as an educational tool, educational demos

can be hosted there and used in the classroom.

More precisely, I am involved with nanoBIO, nanoBIO is a project that aims to extend

nanoHUB from being just about nanotechnology to also include biological models. I have

helped the deployment of CompuCell3D on nanoHUB, and I built a helper script that helps

prepare a CompuCell3D model for deployment on nanoHUB [92] (see online: https:

//github.com/JulianoGianlupi/cc3d-nanoHub-tool-maker), as well as

a template for the deployment of tellurium [93] models [94] (see online: https://gith

ub.com/JulianoGianlupi/tellurium-nanohub-base). I have deployed 17

educational tools [94–111].

6.2 Future work

6.2.1 Translator

As mentioned, James Glazier and Paul Macklin were awarded a NSF POSE grant to build a

standardized ecosystem for virtual tissue modeling. My efforts in building a translator will

play a pivotal role in the success of this effort. I’ve pointed out areas that will be a challenge

and addressed some of them. These challenging areas will most likely continue to be

difficult when addressing other platforms beyond CompuCell3D and PhysiCell. I believe

the main areas of difficulty won’t be related to forces or how behaviors are defined, but on

concepts that one framework has an the other doesn’t. In my work translating PhysiCell

into CompuCell3D this was the phenotypes, this was such a big hurdle that it became its
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own project (PhenoCellPy).

Near future developments for the translator will focus on finding an adequate form for

the cell-cell contact energy in CompuCell3D that reproduces the adhesion-repulsion forces

of PhysiCell. Another area of focus will be on improving cell movement in the translated

simulation (i.e., implementing a version of PhysiCell’s bias), and translating the initial cell

layout used by PhysiCell.

6.2.2 PhenoCellPy

PhenoCellPy is a promising Python package that will help computational biologists build

ABMs for cellular systems. To make its adoption easy the next step in its development

is creating a Conda or pip distribution package for PhenoCellPy. That will make Pheno-

CellPya part of the user’s python environment and importing it will be the same as import-

ing any other python package (e.g., NumPy).

Next we will focus on more robust API features, coordinating the embedded Pheno-

CellPy model with the main model will be easier and faster. The API will also make the

integration of PhenoCellPy with other modeling platforms beyond CompuCell3D and Tis-

sueForge straight forwards.

6.2.3 My Future Post-Doctoral Research

Besides continuing the development of PhenoCellPy and advising on the ABM definition

standard, I will begging a new research line with Dr. Amber Smith at UTHSC.

I will work on building models of pneumococcus pneumonia infection. How the pneu-

mococci bacteria avoid detection by the immune system, change phenotype, how the dis-

ease progresses, and so on.
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Appendices

APPENDIX A

MULTISCALE MODEL OF ANTIVIRAL TIMING, POTENCY, AND

HETEROGENEITY EFFECTS ON AN EPITHELIAL TISSUE PATCH

INFECTED BY SARS-COV-2

A.1 Simple PK model for Remdesivir and GS-443902

Gallo [33] developed a model to predict the intracellular concentration of remdesivir triphos-

phate (GS–443902) after IV infusion of remdesivir in humans. Their model is based on

measurement of GS–443902 in peripheral blood mononuclear cells (PBMC) following IV

infusion of remdesivir. That model is then used as a surrogate for predicting the concen-

tration in lung cells assuming the exposure, uptake and metabolism of the two cell types

are similar. Here we develop a simpler model designed to just predict the GS–443902

concentration in lung cells based on the data and model of Gallo, along with data from

Humeniuk et al. [23], and with additional PBMC data from the Gilead application to the

European Medicines Agency’s for the compassionate use of remdesivir to treat COVID-19

patients [112]. The goal of this model is simply to estimate reasonable tissue concentra-

tions of GS–443902 versus time as a function of remdesivir dose in repetitive dosing sce-

narios. These dosing scenarios are like those used by Gallo and in the compassionate use

document. The model layout is shown in Figure 3.1 (in the main paper) and the ordinary

differential equations,

d(CGS · vol)
dt

=

(
Drmd · kin

τI

)
− vol · kout · CGS , (A.1)

d(CAUC
GS )

dt
= CGS . (A.2)
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Differential equations for the minimized remdesivir PK model. Note that vol in Equa-

tions A.1 and A.2, in Figure 3.1 and in Table 3.1, and is the effective volume of the single

compartment in the model. Here, Drmd is in mols. The model’s input for remdesivir is in

milligrams, which the COPASI code converts to moles (e.g., ”Remdes dose mol”) so that

conversion of remdesivir to GS–443902 is one-to-one.

Our simplified model was constructed in COPASI (http://copasi.org), an SBML com-

pliant biochemical system simulator well suited for modeling chemical and biological pro-

cesses represented by ordinary differential equations (ODEs). COPASI allows for easy

model definition, including the use of links to biological ontologies for unique identifica-

tion of species and concepts, as well as a suite of tools for running simulations, parameter

fitting, sensitivity analysis etc. The COPASI file (which is setup to do the parameter esti-

mation task) along with the parameter files based on Gallo, Humeniuk et al. and the com-

passionate use document are available at https://github.com/JulianoGianlupi/covid-tissue-

response-models/, or the entire repository can be downloaded from

https://github.com/JulianoGianlupi/covid-tissue-response-models/zipball/fossilized-repo/.

Table A.1 summarizes the parameters and measurements from the Humeniuk study and

compassionate use documents that we used to calibrate our model.
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Table A.1: Data used to calibrate the simple remdesivir to GS–443902 prediction model.
*Humeniuk’s Table 4 in [23]; **EU Compassionate Use’s Table 16 in [112]; *** Infusion
duration not given, assumed to be 1 hour.

Parameter Unit
Humeniuk*

Cohort 7

Humeniuk*

Cohort 8

EU

Compassionate Use**

Remdesivir Dose mg 150 75 200

Infusion Duration h 2 0.5 1.0 ***

GS–443902 Cmax uM 6.0 5.9 9.8

GS–443902 C24hr uM 3.7 3.3 6.9

GS–443902 t1/2 1/h 36 49

GS–443902 AUC24h h*uM 157.4

GS–443902 AUCinf h*uM 297 394

GS–443902 AUClast h*uM 272 340
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Figure A.1: Comparison of our simplified model to Gallo’s population simulation plot of
predicted intracellular lung GS–443902 concentration. Gallo’s mean response is shown by
the black line and the 95% interval is shaded. This data is from 5000 simulations in which
the two key parameters in the Gallo model were sampled from distributions with 20% CV.
See Gallo and their supplement Figure S5 for more information. Blue line is our simplified
model’s output. The Gallo data used in this plot was digitized from the publication using
https://automeris.io/WebPlotDigitizer/.

A.1.1 COPASI Codes

The COPASI model files are available on GitHub as described earlier. Simulations were

developed in COPASI version 4.30 (Build 240) and have been checked through version

version 4.34 (Build 251). Below we give details for running the two models.

A.1.1.1 COPASI model file for parameter fitting

The file GS-443902 PBMC PK v05 3data plusEurope.cps does the parameter

estimation task based on the data of [23]. The data files are included in the GitHub reposi-

tory. This COPASI file is set up to do both the parameter fitting task and a basic time course

simulation. Load the file in COPASI and insure that the following data files are in the same
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folder that contains the COPASI .cps file:

• Humeniuk PK data Europe Table 16.txt

• Humeniuk PK data Table 4 Cohort7.txt

• Humeniuk PK data Table 4 Cohort8.txt

The COPASI model implements the infusion period with an event named ”Infusion”, which

changes the variable ”kin” from 1 to 0 when the model’s time exceeds the length of the

”τI” parameter (see Equation A.1 and the COPASI code). Several other events are used to

determine the Tmax, Cmax, AUC at 24 hours etc. The remdesivir dose is input in milligrams

and converted to moles by the COPASI code. To run the parameter estimation, select

”Task”, ”Parameter Estimation”, then select an estimation method. We used the ”Particle

Swarm” method with the default values. In the Upper right of the COPASI window the

button ”Experimental Data” will open the data window. If the data files listed above are

in the same directory as the .cps file then this should be populated with the data mappings

for each of the three files. These values are also summarized in Table A.1. In the upper

right of the COPASI window click the ”update model” checkbox so the fitted parameters

are updated into the starting values for the COPASI model. Click ”Run” and the parameter

are estimated and available on the ”Results” sub-item. The Particle Swarm should iterate

down to an objective value of about 6.2x10−11. The models has now been updated with the

results for the terminal clearance half life and the effective compartment volume, typically

30.2 hours and 38.4 liters, respectively. A time course can be run using these parameters

by selecting ”Tasks”, ”Time Course” then ”Run”. This COPASI model generate several

graphs, some of which are for the fitting task and some for the time course task.

A.1.1.2 COPASI model file for calculating GS–443902 from repetitive remdesivir doses

The file GS-443902 PBMC PK v05 3data repeatDose Gallo.cps sim-

ulates repetitive doses of 200, then 100x4mg/day. This model is based on the parameter
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fitting model described above. The variable kin controls the infusion periods as well as

the infusion dose since it can be thought of as a multiplier on the infusion dose (see Equa-

tion A.1). During the initial infusion kin is 1 and in subsequent infusion periods 0.5 to

implement the initial 2x loading dose. This factor in combination with the remdesivir dose

(Remdes dose mg) value gives the 200mg then four times 100 mg dosing pattern. The in-

fusion timing is shown in the ”kin” plot generated by the COPASI code. Loading this model

into COPASI, then ”Task”, ”Time Course”, ”Run” produces output similar to what is shown

in Figure A.1. Note that the maximum units in COPASI on the Y-axis are mole/liter with

values near 10−5mol/L, which corresponds to the ∼ 10µM values in Figure A.1.

A.2 Table of parameters from Sego et. al

Here we present all the parameters from Sego et al. [1]. In this work, we only changed

the simulation step time-length, going from 1200s to 300s. We have marked it with an

asterix and included our value in parenthesis. The reasoning for the choice of each of the

parameters can be found in their original paper in Table 1.

Table A.2: Sego et al.’s conversion factors

Conversion Factors Value

Simulation step ∆t 1200.0s * (300.0s)

Lattice width 4.0µm

Scale factor for concentration 10−14mol
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Table A.3: Sego et al.’s parameters part 1

Simulation parameter name Value Simulation parameter name Value

Cell diameter 12.0µm
Viral decay

rate γvir
7.71× 10−6s−1

Replication rate rmax (1/12)10−3s−1 Cytokine diffusion
coefficient Dcyt

0.16µm2s−1

Translating rate rt (1/18)10−3s−1 Cytokine diffusion
length λcyt

100µm

Unpacking rate ru (1/6)10−3s−1 Cytokine decay
rate γcyt

1.32× 10−5s−1

Packaging rate rp (1/6)10−3s−1

Maximum cytokine
immune secretion rate
σcyt(immuneactivated)

3.5× 10−4pMs−1

Release rate rs (1/6)10−3s−1

Immune secretion
midpoint

Vcyt(immuneactivated)
1pM

Scale factor for number
of mRNA per

infected cell mRNAavg

1000cell−1

Cytokine immune
uptake rate

ωcyt(immuneactivated)
3.5× 10−4pMs−1

Viral dissociation
coefficient rhalf

2000

Maximum cytokine
infected cell
secretion rate
σcyt(infected)

3.5× 10−3pMs−1

Viral diffusion
coefficient Dvir

0.01µm2s−1

Infected cell cytokine
secretion mid-point
Vcyt(infected),

Vcyt(virus− releasing)

0.1

Viral diffusion
length λvir

36µm
Cytokine secretion

Hill coefficient
hcyt

2
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Table A.4: Sego et al.’s parameters part 2

Simulation parameter name Value Simulation parameter name Value
Immune cell cytokine
activation EC50,cyt,ac

10pM
Virally-induced apoptosis
dissociation coefficient Vapo

100

Immune cell equilibrium
bound cytokine EQck

210pM
Virally-induced apoptosis
characteristic time constant αapo

20min

Immune cell bound
cytokine memory ρcyt

0.99998s−1 Immune cell activation
Hill coefficient hact

2

Immune cell activated
time 10h

Immune response
add immune cell
coefficient βadd

1/1200s−1

Oxidation Agent
diffusion coefficient Doxi

0.64µm2s−1

Immune response
subtract immune
cell coefficient βsub

1/6000cell−1s−1

Oxidation Agent
diffusion length λoxi

36µm
Immune response
delay coefficient βdelay

1.2× 106s

Oxidation Agent
decay rate γoxi

1.32× 10−5s−1 Immune response
decay coefficient βdecay

1/12000s−1

Immune cell oxidation
agent secretion rate σoxi

3.5× 10−3pM s−1

Immune response
cytokine transmission
coefficient αsig

0.5

Immune cell
Ccyt threshold for
Oxidation Agent release tsec

10A.U. =
1.5625pM

Immune response
probability scaling
coefficient αimmune

0.01

Tissue cell Coxi

threshold for death tdeath−oxi

1.5A.U. =
0.234375pM

Number of immune cell
seeding samples nseeding

10

Initial density of
unbound cell surface
receptors Ro

200cell−1 Initial immune cell
target volume 64µm3

Table A.5: Sego et al.’s parameters part 3

Virus-receptor
association affinity kon

1.4× 104M−1 s−1 Immune cell lambda
volume λvolume

9

Virus-receptor
dissociation affinity koff

1.4× 10−4s
Initial number of
immune cells 0

Infection threshold 1
Immune cells lambda
chemotaxis λchemotaxis

1

Uptake Hill
coefficient kupt

2
Intrinsic Random
Motility H∗ 10

Uptake characteristic
time constant αupt

20min
Contact coefficients
J (all interfaces) 10

Virally-induced
apoptosis Hill
coefficient hapo

2
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A.3 Quantitative metrics of treatment outcome

The classification of treatment outcomes into fast clearance, slow clearance, partial con-

tainment, or widespread infection is done by using quantitative metrics in an algorithm.

We always use the median measurements of the simulation replicas for each parameter

combination. We first look at the median time course of the uninfected population, second

at the median time course of the extracellular viral load, third at the extracellular virus AUC

from treatment start.

If the median uninfected population at simulation end is below ten or less than half the

uninfected population at the start of treatment we classify it as ineffective with widespread

infection.

The next metric we look at is median extracellular viral load. If the viral load goes

below a threshold of 1.3A.U. the simulation has cleared the virus at least once (there may

be subsequent releases of extracellular virus) but we still don’t know if the infection was

contained or not. If the extracellular virus was cleared in less than 14 days of treatment

and the extracellular virus concentration does not rise above a slightly higher threshold of

1.1 × 1.3A.U. = 1.43A.U. after treatment initiation we classify the treatment as effective

with fast containment.

If the virus is cleared but then there is a rise above 1.43A.U. we look at the maxima and

minima of the logarithm of extracellular viral load post 14 days of treatment. We calculate

the difference of the last maxima and the first minima (∆M ) and we compare it to another

threshold of 10−4A.U. If the difference is close to zero, |∆M | < 10−4A.U., we classify

the treatment as ineffective with a partial containment. If the difference is less than the

negative of the threshold (∆M < −10−4A.U.) we classify the treatment as effective and

the clearance as slow. If the difference is above the positive threshold (∆M > 10−4A.U.)

we classify the result as widespread infection.

If the extracellular virus level never goes below the 1.3A.U. threshold we first check
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against the 1.43A.U. threshold, if the levels have gone below it we classify the treatment

as partial containment. If not we look at ∆M (as before) and at the AUC from treatment

initiation (AUCTI). If AUCTI is below 300A.U. we classify the treatment as ineffective

with a partial containment. If not we use ∆M and the threshold of 10−4A.U. for the clas-

sification.

A.4 Instructions for running the multiscale CompuCell3D simulations and for ana-

lyzing the results

The simulation code as well as the scripts used to analyze the results are hosted in gitHub at

https://github.com/JulianoGianlupi/covid-tissue-response-models/, download repository.

A.4.1 CompuCell3D simulations

To run the ABM you can use either your personal computer or a cluster. You need to

download CompuCell3D version 4.2.3 (or newer, investigations were done in 4.2.3), ht

tps://compucell3d.org/SrcBin. For local installations, run the python script

cellular-model/batch run.py, and (optionally) define the output directory in the

script. For cluster execution, change the output directory in

cellular-model/batch exec.py and run the script

cellular-model/batch exec.sh. The script is set up for Slurm scheduling sys-

tems. In those files you can define the output directory (variable

sweep output folder).

All parameters that were varied and investigated are in the file cellular-model/

investigation dictionaries.py and are imported to batch run.py and

batch exec.py. To change the investigated parameters, change the dictionary used

as mult dict in one of those files. e.g.:

• mult dict = treatment starts 0, parameters varied in the fine investiga-

tion with treatment starting with the infection of 10 epithelial cells
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• mult dict = treatment starts 3 halved half life, parameters var-

ied in the fine investigation with treatment starting3 days post the infection of 10

epithelial cells and with the half life of GS–443902 halved.

Those files also support defining how many replicas to be executed for each parameter

combinations to do with the variable num rep. The workflow will then run through all

combinations of parameters in mult dict, generating and running ”num rep” simulations

for each. All results will be stored in ”sweep output folder”. Each parameter com-

bination is called a ”set” and all results of a set are in their respective folder. e.g., for the

following parameter dictionary

treatment_starts_0 = {

'first_dose': [0],

'dose_interval': [1, 1.5, 2, 2.5, 3,

3.5, 4, 4.5, 5, 5.5, 6],

'ic50_multiplier': [0.01, 0.02, 0.03, 0.04,

0.05, 0.06, 0.07, 0.08,

0.09, 0.1],

't_half_mult': [1]}

the first set (set 0) uses first dose=0, dose interval=1, ic50 multiplier

=0.01, and t half mult=1. The results for it will be in sweep output folder/

set 0, each replica will be in sweep output folder/set 0/run 0,

sweep output folder/set 0/run 1, [...], sweep output folder/set 0/

run num rep. The second set (set 1) then uses dose interval=1.5 and

ic50 multiplier=0.01; and so on.
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A.4.2 Results analysis

There are two steps for the analysis of the ABM results, in the first step the median behav-

iors of the simulation replicas are measured and used for classifying the treatment among

the classes defined in the methods section 3.2.5. The second step is to, then, generate the

parameter variation Figures (e.g. Figure 3.6b).

The file cellular-model/grid color picker.py does step one. You only

need to set the variable base path to your path to the ”set” folders. Then step two is

performed by cellular-model/PostMultiSet.py, change base path in it to

be the same as in step one.

A.5 Supplementary results for the untreated simulations with different initial con-

ditions

Here we have the results for the untreated simulations with different initial conditions,

namely with 1, 2, 5 and 10 infected cells at the start of the simulation. All of the results for

this appendix use 400 simulation replicas for each set of parameters used. For all subfigures

the median measurement of simulation replicas is the black line, the 0th to 100th quantiles

are shaded as dark blue, 10th to 90th shaded in orange, and 25th to 75th as light blue.
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(a) (b)

(c) (d)

Figure A.2: Dead cell populations for 400 replicas of Sego et al.’s model [1]. In all the
cases the medians of simulation replicas are in black lines, the 0th to 100th quantiles are
shaded as dark blue, 10th to 90th shaded in orange, and the 25th to 75th as light blue.
A.2a) Simulations start with 1 initially infected cell and 7 simulations result in failure to
infect (1.75% of replicas), the 90th quantile includes the upper bound of the number of
cells. A.2b) Simulations start with 2 initially infected cells where 5 simulations result in
failure to infect (1.25%), the 100th quantile includes the upper bound of the number of
cells. A.2c) Simulations start with 5 initially infected cells. A.2d) Simulations start with
10 initially infected cells.
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(a) (b)

(c) (d)

Figure A.3: Extracellular viral load for 400 replicas of Sego et al.’s model [1], y-axis in
log scale. In all the cases the medians of simulation replicas are in black lines, the 0th to
100th quantiles are shaded as dark blue, 10th to 90th shaded in orange, and the 25th to 75th
as light blue. A.3a) Simulations start with 1 initially infected cell and 7 simulations result
in failure to infect (1.75% of replicas), the 90th quantile includes the upper bound of the
number of cells. A.3b) Simulations start with 2 initially infected cells where 5 simulations
result in failure to infect (1.25%), the 100th quantile includes the upper bound of the num-
ber of cells. A.3c) Simulations start with 5 initially infected cells. A.3d) Simulations start
with 10 initially infected cells.
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(a) (b)

(c) (d)

Figure A.4: Extracellular viral AUC for 400 replicas of Sego et al.’s model [1], y-axis in
log scale. In all the cases the medians of simulation replicas are in black lines, the 0th to
100th quantiles are shaded as dark blue, 10th to 90th shaded in orange, and the 25th to 75th
as light blue. A.4a) Simulations start with 1 initially infected cell and 7 simulations result
in failure to infect (1.75% of replicas), the 90th quantile includes the upper bound of the
number of cells. A.4b) Simulations start with 2 initially infected cells where 5 simulations
result in failure to infect (1.25%), the 100th quantile includes the upper bound of the num-
ber of cells. A.4c) Simulations start with 5 initially infected cells. A.4d) Simulations start
with 10 initially infected cells.

A.6 Supplementary results from treatment initiation delay, antiviral potency, and

GS-443902 half-life variation

All of the results for this appendix use 8 simulation replicas for each set of parameters used.

For all subfigures the median measurement of simulation replicas is the black line, the 0th to

100th quantiles are shaded as dark blue, 10th to 90th shaded in orange, and 25th to 75th as

light blue. The subplots with axis colored in green are classified as repid clearance, in blue

as slow clearance, in black partial containment, in red widespread infection. The sections
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names describe if the results in it are for homogeneous or heterogeneous metabolism, if

the half-life of GS–443902 was altered, and how long is the delay from the infection of ten

epithelial cells to treatment initiation.

A.6.1 Homogeneous metabolism, regular GS–443902 half-life

A.6.1.1 Treatment initiation with infection of ten epithelial cells

Figure A.5: Uninfected population.

Figure A.6: Infected (eclipse phase) population.
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Figure A.7: Infected (secreting extracellular virus) population.

Figure A.8: Dead population.
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Figure A.9: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.10: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.
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Figure A.11: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.

Figure A.12: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.13: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

A.6.1.2 Treatment initiation 12 hours post the infection of ten epithelial cells

Figure A.14: Uninfected population.
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Figure A.15: Infected (eclipse phase) population.

Figure A.16: Infected (secreting extracellular virus) population.
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Figure A.17: Dead population.

Figure A.18: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.19: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.

Figure A.20: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.
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A.6.1.3 Treatment initiation one day post the infection of ten epithelial cells

Figure A.21: Uninfected population.

Figure A.22: Infected (eclipse phase) population.
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Figure A.23: Infected (secreting extracellular virus) population.

Figure A.24: Dead population.
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Figure A.25: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.26: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.
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Figure A.27: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.

Figure A.28: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.29: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

A.6.1.4 Treatment initiation three days post the infection of ten epithelial cells

Figure A.30: Uninfected population.
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Figure A.31: Infected (eclipse phase) population.

Figure A.32: Infected (secreting extracellular virus) population.
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Figure A.33: Dead population.

Figure A.34: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.35: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.

Figure A.36: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.
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Figure A.37: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.38: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.
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A.6.2 Homogeneous metabolism, halved GS–443902 half-life

A.6.2.1 Treatment initiation with infection of ten epithelial cells

Figure A.39: Uninfected population.

Figure A.40: Infected (eclipse phase) population.
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Figure A.41: Infected (secreting extracellular virus) population.

Figure A.42: Dead population.
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Figure A.43: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.44: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.
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Figure A.45: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.

Figure A.46: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.47: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

A.6.2.2 Treatment initiation one day post infection of ten epithelial cells

Figure A.48: Uninfected population
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Figure A.49: Infected (eclipse phase) population.

Figure A.50: Infected (secreting extracellular virus).
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Figure A.51: Dead population.

Figure A.52: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.53: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.

Figure A.54: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.
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Figure A.55: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.56: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.
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A.6.2.3 Treatment initiation three days post infection of ten epithelial cells

Figure A.57: Uninfected population.

Figure A.58: Infected (eclipse phase) population.
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Figure A.59: Infected (secreting extracellular virus) population.

Figure A.60: Dead population.
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Figure A.61: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.62: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.
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Figure A.63: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.

Figure A.64: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.65: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.
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A.6.3 Homogeneous metabolism, GS–443902 half-life reduced by 75%

A.6.3.1 Treatment initiation with infection of ten epithelial cells

Figure A.66: Uninfected population.

Figure A.67: Infected (eclipse phase) population.
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Figure A.68: Infected (secreting extracellular virus) population.

Figure A.69: Dead population.
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Figure A.70: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.71: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.
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Figure A.72: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-marks.

Figure A.73: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.74: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

208



A.6.4 Heterogeneous metabolism, regular GS–443902 half-life

A.6.4.1 Treatment initiation with infection of ten epithelial cells

Figure A.75: Uninfected population.

Figure A.76: Infected (eclipse phase) population.
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Figure A.77: Infected (secreting extracellular virus) population.

Figure A.78: Dead population.
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Figure A.79: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.80: Total diffusive virus produced (AUC) for 8 replicas of the treatment simula-
tion, Y axis in log scale, exponent values as tick-marks.
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Figure A.81: Diffusive cytokine amount for 8 replicas of the treatment simulation, Y axis
in log scale, exponent values as tick-marks.

Figure A.82: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.83: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

A.6.4.2 Treatment initiation twelve hours post the infection of ten epithelial cells

Figure A.84: Uninfected population.
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Figure A.85: Infected (eclipse phase) population.

Figure A.86: Infected (secreting extracellular virus) population.
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Figure A.87: Dead population.

Figure A.88: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.89: Diffusive cytokine amount for 8 replicas of the treatment simulation, Y axis
in log scale, exponent values as tick-marks.

Figure A.90: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.
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A.6.4.3 Treatment initiation one day post the infection of ten epithelial cells

Figure A.91: Uninfected population.

Figure A.92: Infected (eclipse phase) population.
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Figure A.93: Infected (secreting extracellular virus) population.

Figure A.94: Dead population.

218



Figure A.95: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.96: Total diffusive virus produced (AUC), Y axis in log scale, exponent values as
tick-marks.
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Figure A.97: Diffusive cytokine amount for 8 replicas of the treatment simulation, Y axis
in log scale, exponent values as tick-marks.

Figure A.98: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.99: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

A.6.4.4 Treatment initiation three days post the infection of ten epithelial cells

Figure A.100: Uninfected population.
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Figure A.101: Infected (eclipse phase) population.

Figure A.102: Infected (secreting extracellular virus) population.
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Figure A.103: Dead population.

Figure A.104: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.105: Total diffusive virus produced (AUC), Y axis in log scale, exponent values
as tick-marks.

Figure A.106: Diffusive cytokine amount, Y axis in log scale, exponent values as tick-
marks.
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Figure A.107: Amount of viral RNA in infected cells (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.108: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.
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A.6.5 Heterogeneous metabolism using other standard deviations

In these simulations treatment was initialized one day after the infection of 10 cells.

A.6.5.1 Standard deviation set to 0.1

Figure A.109: Uninfected population.

Figure A.110: Infected (eclipse phase) population.
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Figure A.111: Infected (secreting extracellular virus) population.

Figure A.112: Dead population.
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Figure A.113: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.

Figure A.114: Diffusive cytokine amount for 8 replicas of the treatment simulation, Y axis
in log scale, exponent values as tick-marks.
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Figure A.115: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

A.6.5.2 Standard deviation set to 0.5

Figure A.116: Uninfected population.
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Figure A.117: Infected (eclipse phase) population.

Figure A.118: Infected (secreting extracellular virus) population.
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Figure A.119: Dead population.

Figure A.120: Extracellular diffusive virus quantities (arbitrary units), Y axis in log scale,
exponent values as tick-marks.
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Figure A.121: Diffusive cytokine amount for 8 replicas of the treatment simulation, Y axis
in log scale, exponent values as tick-marks.

Figure A.122: Immune response state variable number. Positive values correspond to an
inflammatory state, negative to an anti-inflammatory state.

A.6.5.3 How heterogeneity affects intracellular drug levels

Here we show how different levels of metabolism heterogeneity affect intra-cellular drug

levels. For high heterogeneity some cells have an internal concentration of antiviral close

to or at zero.
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(a) (b)

(c) (d)

Figure A.123: Mean antiviral drug levels in virus-releasing infected cells (solid lines) with
standard deviation (shaded regions) versus time for individual simulation replicates under
different simulation options. Sub-figure A.123a is treated with no metabolism heterogene-
ity, A.123b is treated with a metabolism standard deviation of 0.1, A.123c is treated with a
metabolism standard deviation of 0.25, and A.123d is treated with a metabolism standard
deviation of 0.25.

A.7 Supplementary results for viral production metabolism rate correlation

For the figures of this appendix as well as Figure 3.12 we performed 4 simulation replicas

for each parameter set. We group the cells of all parameter set replicas into 50 bins by

their metabolism rates, we then compute the mean production of that bin and the maximum

viral production of all bins. We plot the mean of the bin divided by the maximum mean

production of all bins versus the metabolism rate.
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Figure A.124: Mean viral production of cells versus their metabolism rates normalized
by the maximum mean production with rapid clearance parameters. A.124a Results for
simulations varying only kin. A.124b Results for simulations varying only kout.
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Figure A.125: Mean viral production of cells versus their metabolism rates normalized
by the maximum mean production with rapid clearance parameters. A.125a Results for
simulations varying only kin. A.125b Results for simulations varying only kout.
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Figure A.126: Mean viral production of cells versus their metabolism rates normalized
by the maximum mean production with slow clearance parameters. A.126a Results for
simulations varying only kin. A.126b Results for simulations varying only kout.
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Figure A.127: Mean viral production of cells versus their metabolism rates normalized by
the maximum mean production with widespread infection parameters. A.127a Results for
simulations varying only kin. A.127b Results for simulations varying only kout.
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APPENDIX B

TRANSLATING MODEL SPECIFICATIONS APPENDIX

B.1 Converting Space Dimensions

def get_dims(pcdict, space_convs=_space_convs):

"""

Parses PhysiCell data and generates CC3D space dimensions and unit

conversions

This function looks for the value of the maximum and minimum of all

coordinates in PhysiCell (

pcdict['domain']['x_min'], pcdict['domain']['x_max'], etc) and saves

them to variables. It also

looks for the

discretization variables from PhysiCell (pcdict['domain']['dx'], etc

) and saves them to variables.

Using the size of

the domain and the discretization it defines what will be the number

of pixels in CompuCell3D's

domain.

It also looks for the unit used in PhysiCell to determine what will

be the pixel/unit factor in CC3D

.

:param pcdict: Dictionary created from parsing PhysiCell XML

:param space_convs: Dictionary of predefined space units

:return pcdims, ccdims: Two tuples representing the dimension data

from PhysiCell and in CC3D.

((xmin, xmax), (ymin, ymax), (zmin, zmax), units), and
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(cc3dx, cc3dy, cc3dz, cc3dspaceunitstr, cc3dds,

autoconvert_space)

"""

xmin = float(pcdict['domain']['x_min']) if "x_min" in pcdict['domain

'].keys() else None

xmax = float(pcdict['domain']['x_max']) if "x_max" in pcdict['domain

'].keys() else None

ymin = float(pcdict['domain']['y_min']) if "y_min" in pcdict['domain

'].keys() else None

ymax = float(pcdict['domain']['y_max']) if "y_max" in pcdict['domain

'].keys() else None

zmin = float(pcdict['domain']['z_min']) if "z_min" in pcdict['domain

'].keys() else None

zmax = float(pcdict['domain']['z_max']) if "z_max" in pcdict['domain

'].keys() else None

units = pcdict['overall']['space_units'] if 'overall' in pcdict.keys

() and \

'space_units' in pcdict[

'

overall

'

]

.

keys

()

else

'

micron
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'

autoconvert_space = True

if units not in space_convs.keys():

message = f"WARNING: {units} is not part of known space units.

Automatic space-unit

conversion disabled." \

f"Available units for auto-conversion are:\n{

space_convs.keys()

}"

warnings.warn(message)

autoconvert_space = False

# the dx/dy/dz tags mean that for every voxel there are dx space-

units.

# therefore [dx] = [space-unit/voxel]. Source: John Metzcar

dx = float(pcdict['domain']['dx']) if "dx" in pcdict['domain'].keys

() else 1

dy = float(pcdict['domain']['dy']) if "dy" in pcdict['domain'].keys

() else 1

dz = float(pcdict['domain']['dz']) if "dz" in pcdict['domain'].keys

() else 1

# print(dx, dy, dz, type(dx), type(dy), type(dz), )

if not dx == dy == dz:

message = "WARNING! Physicell's dx/dy/dz are not all the same: "

\

f"dx={dx}, dy={dy}, dz={dz}\n" \

f"Using {max(min(dx, dy, dz), 1)}"

warnings.warn(message)
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ds = max(min(dx, dy, dz), 1)

diffx = 1 if xmin is None or xmax is None else round(xmax - xmin)

diffy = 1 if ymin is None or ymax is None else round(ymax - ymin)

diffz = 1 if zmin is None or zmax is None else round(ymax - zmin)

cc3dx = round(diffx / ds)

cc3dy = round(diffy / ds)

cc3dz = round(diffz / ds)

cc3dds = cc3dx / diffx # pixel/unit

# [cc3dds] = pixel/unit

# [cc3dds] * unit = pixel

cc3dspaceunitstr = f"1 pixel = {cc3dds} {units}"

pcdims, ccdims = ((xmin, xmax), (ymin, ymax), (zmin, zmax), units),

\

(cc3dx, cc3dy, cc3dz, cc3dspaceunitstr, cc3dds,

autoconvert_space

)

return pcdims, ccdims

B.2 Converting Time Dimensions

B.3 Converting Cell Types and Extracting Mechanics

B.3.1 Cell Types Extraction

def make_cell_type_plugin(pcdict):

"""
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Makes the cell type plugin for CC3D

Passes pcdict to make_cell_type_tags to generate the cell types and

returns the results

:param pcdict: Dictionary created from parsing PhysiCell XML

:return ct_str, wall, cell_types: string setting the cell type

plugin for cc3d's XML, bool for

the presence of a

wall cell type, list of cell types

"""

ct_str = '\n<Plugin Name="CellType">\n\t' \

'<CellType TypeId="0" TypeName="Medium"/>\n'

typesstr, wall, cell_types = make_cell_type_tags(pcdict)

ct_str += typesstr

ct_str += '</Plugin>'

return ct_str, wall, cell_types

def make_cell_type_tags(pcdict):

"""

Parses the PhysiCell dictionary to fetch the cell type names,

generates the internal part of

the cell type plugin

:param pcdict: Dictionary created from parsing PhysiCell XML

:return s, create_wall, cell_types: string for the cell type plugin,

bool for the existance of a

wall cell type,

list of cell type names

"""

s = ''

cell_types = []

idx = 1

for child in pcdict['cell_definitions']['cell_definition']:
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# print(child.tag, child.attrib, child.text)

name = child['@name'].replace(" ", "_")

cell_types.append(name)

ctt = f'\t<CellType TypeId="{idx}" TypeName="{name}"/>\n'

s += ctt

idx += 1

create_wall = get_boundary_wall(pcdict)

if create_wall:

s += f'\t<CellType Freeze="" TypeId="{idx}" TypeName="WALL"/>\n'

cell_types.append("WALL")

return s, create_wall, cell_types

B.3.2 Mechanics Extraction

def get_cell_constraints(pcdict, space_unit, minimum_volume=8):

"""

Extracts cell constraints from the given PhysiCell pcdict.

Parameters:

-----------

pcdict : dict

Dictionary created from parsing PhysiCell XML. Must contain a "

cell_definitions" key that

maps

to a dictionary with a "cell_definition" key. This key should

contain a list of

dictionaries, each of which

represents a Cell Type.

space_unit : float

A scaling factor for the simulation's spatial units. All volumes

extracted from pcdict will

be multiplied by
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this factor raised to the power of the dimensionality of the

simulation space.

minimum_volume : float, optional

The minimum volume allowed for any cell in pixels. If a cell's

volume falls below this

threshold after scaling,

the translator will reconvert space so that the minimum cell

volume is equal to this

threshold. Defaults to 8.

Returns:

--------

constraints : dict

A dictionary containing the constraints for each Cell Type found

in pcdict. Each key is a

Cell Type name

(converted to an underscore-delimited string), and each value is

a dictionary containing

information about

that Cell Type's volume, mechanics, custom data, and phenotypes.

any_below : bool

A boolean indicating whether any cells had volumes that fell

below minimum_volume after

scaling.

volumes : list

A list containing the scaled volumes of each Cell Type found in

pcdict.

minimum_volume : float

The minimum volume allowed for any cell, after scaling.

Raises:

-------

UserWarning
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If a Cell Type's volume is missing a unit or value in pcdict, or

if the scaled volume falls

below

minimum_volume.

"""

constraints = {}

any_below = False

volumes = []

for child in pcdict['cell_definitions']['cell_definition']:

ctype = child['@name'].replace(" ", "_")

constraints[ctype] = {}

volume, unit = get_cell_volume(child)

if volume is None or unit is None:

message = f"WARNING: cell volume for cell type {ctype}

either doesn't have a

unit \n(unit found: {

unit}) " \

f"or" \

f" doesn't have a value (value found: {volume}). \

nSetting the

volume to be

the minimum

volume, " \

f"{minimum_volume}"

warnings.warn(message)

volume = None

unit = "not specified"

dim = 3

else:

dim = int(unit.split("ˆ")[-1])

if volume is None:

volumepx = None

else:
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volumepx = volume * (space_unit ** dim)

below, minimum_volume = check_below_minimum_volume(volumepx,

minimum=minimum_volume)

constraints[ctype]["volume"] = {f"volume ({unit})": volume,

"volume (pixels)": volumepx}

volumes.append(volumepx)

if below:

any_below = True

message = f"WARNING: converted cell volume for cell type {

ctype} is below {

minimum_volume}.

Converted volume " \

f"{volumepx}. \nIf cells are too small in CC3D

they do not

behave in a

biological

manner and may

" \

f"disapear. \nThis program will enforce that: 1)

the volume

proportions

stay as before

; 2) the " \

f"lowest cell volume is {minimum_volume}"

warnings.warn(message)

constraints[ctype]["mechanics"] = get_cell_mechanics(child)

constraints[ctype]["custom_data"] = get_custom_data(child)

constraints[ctype]["phenotypes"], constraints[ctype]["

phenotypes_names"] =

get_cell_phenotypes(child)

return constraints, any_below, volumes, minimum_volume
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B.4 Converting Secretion and Uptake rates

def convert_secretion_uptake_data(sec_dict, time_conv, pctimeunit):

"""

Convert secretion data from PhysiCell to CompuCell3D format.

This function converts the secretion data parsed from PhysiCell to

CompuCell3D python commands to

perform

secretion. It also adds comment to indicate any potential

discrepancies between the two

formats, such as

differences in the handling of target secretion or uptake bounds.

The resulting dictionary is

returned.

Parameters

----------

sec_dict : dict

Dictionary containing parsed secretion data from PhysiCell.

time_conv : float

Conversion factor for time units.

pctimeunit : str

PhysiCell time unit.

Returns

-------

dict

Dictionary containing CompuCell3D secretion python commands.

"""

if not sec_dict:

return {}

new_sec_dict = sec_dict
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secretion_comment = '#WARNING: PhysiCell has a concept of "target

secretion" that CompuCell3D does

not. \n#The ' \

'translating program attempts to implement it,

but it may

not be a 1

to 1

conversion.'

uptake_comment = '#WARNING: To avoid negative concentrations, in

CompuCell3D uptake is "bounded."

\n# If the amount' \

' that would be uptaken is larger than the value at

that pixel,\n#

the uptake

will be a set

ratio ' \

'of the amount available.\n# The conversion program

uses 1 as the

ratio,\n# you

may want to ' \

'revisit this.'

for ctype in sec_dict.keys():

type_sec = sec_dict[ctype]

new_type_sec = type_sec

for field, data in type_sec.items():

unit = data['secretion_unit'] if 'secretion_unit' in data.

keys() else None

mcs_secretion_rate, extra_sec_comment =

convert_secretion_rate(

data['secretion_rate'],

unit,

time_conv,pctimeunit)

data['secretion_rate_MCS'] = mcs_secretion_rate
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data['secretion_comment'] = secretion_comment +

extra_sec_comment

unit = data['net_export_unit'] if 'net_export_unit' in data.

keys() else None

mcs_net_secretion_rate, extra_net_sec_comment =

convert_net_secretion(

data['net_export'], unit

,

time_conv, pctimeunit)

data['net_export_MCS'] = mcs_net_secretion_rate

data['net_secretion_comment'] = extra_net_sec_comment

mcs_uptake_rate, extra_up_comment = convert_uptake_rate(data

['uptake_rate'], data['

uptake_unit'],

time_conv, pctimeunit)

data['uptake_rate_MCS'] = mcs_uptake_rate

data['uptake_comment'] = uptake_comment + extra_up_comment

if "secretion_target" not in data.keys():

data["secretion_target"] = 0

new_type_sec[field] = data

new_sec_dict[ctype] = new_type_sec

return new_sec_dict

B.5 Re-scaling time

def reconvert_time_parameter(d_elements, cctime, max_D=50):

"""

Parameters:

-----------

d_elements : dict

a dictionary of diffusion elements.

cctime : tuple
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The previously converted time unit parameters

max_D : float, optional

Maximum diffusion constant allowed. Default 50

Returns:

-------

d_elements : dict

the reconverted dictionary of diffusion elements.

new_cctime : tuple

the reconverted tuple of cc3d time parameters

"""

# get_diffusion_constants returns a list of diffusion constants that

do not use the steady-state

solver

diffusion_constants = get_diffusion_constants(d_elements)

if len(diffusion_constants) == 0 or not max(diffusion_constants) >

max_D:

return d_elements, cctime

message = "WARNING: the converted diffusion parameters were very

high, using them as is would

result in a very " \

"slow simulation. The translating software will reconvert

the time unit in order

to keep the diffusion

" \

" parameters low."

warnings.warn(message)

max_old_D = max(diffusion_constants)

reduction_proportion = round(0.9 * max_D / max_old_D, 2)

new_gammas = []

for key in d_elements.keys():

d_elements[key]["D"] *= reduction_proportion

d_elements[key]["D_conv_factor"] *= reduction_proportion

d_elements[key]["D_conv_factor_text"] = \
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d_elements[key]["D_conv_factor_text"].split("=")[0] + \

" = " + \

f'{d_elements[key]["D_conv_factor"]} ' + \

d_elements[key]["D_conv_factor_text"].split(" ")[-1]

d_elements[key]["gamma"] *= reduction_proportion

d_elements[key]["gamma_conv_factor"] *= reduction_proportion

d_elements[key]["gamma_conv_factor_text"] = \

d_elements[key]["gamma_conv_factor_text"].split("=")[0] + \

" = " + \

f'{d_elements[key]["gamma_conv_factor"]} ' + \

d_elements[key]["gamma_conv_factor_text"].split(" ")[-1]

new_gammas.append(d_elements[key]["gamma"])

new_cctime = [min(int(cctime[0] / reduction_proportion), 10 ** 9),

f'1 MCS = {cctime[2] * reduction_proportion} {cctime[1

].split(" ")[-1]}'

,

cctime[2] * reduction_proportion,

cctime[3]]

return d_elements, new_cctime

B.6 Initial conditions

def default_initial_cell_config(celltypes, xmax, ymax, zmax):

"""

Returns the default UniformInitializer steppable.

The default_initial_cell_config function returns an XML string with

a configuration for

the UniformInitializer steppable in CompuCell3D. The configuration

is based on the input parameters
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of celltypes,

xmax, ymax, and zmax.

The UniformInitializer steppable is responsible for initializing the

initial configuration of cells

in the

simulation. This function sets up a rectangular slab of cells with a

specified width and gap size,

and restricts

the cell types to those specified in the celltypes list. The WALL

cell type is excluded from the

initialization

process.

Parameters

----------

celltypes : list of str

List of cell types.

xmax : int

Maximum x dimension of the simulation.

ymax : int

Maximum y dimension of the simulation.

zmax : int

Maximum z dimension of the simulation.

Returns

-------

str

Configured XML string.

"""

beg = '''<Steppable Type="UniformInitializer">

\t<!-- Initial layout of cells in the form of rectangular slab -->
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\t<!-- PhysiCell has many complex ways of defining the initial

arangement -->

\t<!-- of cells. By default the translator uses a simple configuration,

-->

\t<!-- you are responsible for analysing the initialization of the

original -->

\t<!-- model and reimplement it accordingly -->

\t<Region>\n'''

if (zmax != 1 and zmax != 0) and (xmax > 10 and ymax > 10 and zmax >

10):

box_min = f'\t\t<BoxMin x="{10}" y="{10}" z="{10}"/>\n'

box_max = f'\t\t<BoxMax x="{xmax - 10}" y="{ymax - 10}" z="{zmax

- 10}"/>\n'

elif zmax != 1 and zmax != 0:

box_min = f'\t\t<BoxMin x="{1}" y="{1}" z="{1}"/>\n'

box_max = f'\t\t<BoxMax x="{xmax - 1}" y="{ymax - 1}" z="{zmax -

1}"/>\n'

else:

box_min = f'\t\t<BoxMin x="{10}" y="{10}" z="{0}"/>\n'

box_max = f'\t\t<BoxMax x="{xmax - 10}" y="{ymax - 10}" z="{1}

"/>\n'

gap = "\t\t<Gap>0</Gap>\n\t\t<Width>7</Width>\n"

types = ''

for t in celltypes:

if t.upper() == "WALL":

continue

types += f"{t},"

types = types[:-1]

types = "\t\t<Types>" + types + "</Types>\n"
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end = '''\t</Region>

</Steppable>'''

steppable_string = beg + box_min + box_max + gap + types + end

return steppable_string

B.7 Generating diffusion’s XML

def make_diffusion_plug(diffusing_elements, celltypes, flag_2d):

"""

Generates the XML for the diffusion steppables in CC3D a diffusion

plug, combining the finite

element (FE) solver

and the steady-state solver.

Parameters

----------

diffusing_elements : dict

Dictionary of diffusing elements and their parameters

Each key in the dictionary represents a diffusing element and

its value is a dictionary

with the following keys:

- use_steady_state : bool

Whether or not to use steady-state diffusion solver for this

element.

- concentration_units : str

The concentration units of this element.

- D_w_units : float

The diffusion constant with units of concentrationˆ2/time.

- D_og_unit : str

The original unit of the diffusion constant.

- D : float
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The diffusion constant without units.

- gamma_w_units : float

The decay constant with units of 1/time.

- gamma_og_unit : str

The original unit of the decay constant.

- gamma : float

The decay constant without units.

- initial_condition : str

The initial concentration expression for this element.

- dirichlet : bool

Whether or not to use Dirichlet boundary conditions for this

element.

- dirichlet_value : float

The value of Dirichlet boundary condition for this element.

celltypes : list

List of cell types

flag_2d : bool

Whether the simulation is in 2D

Returns

-------

str

The combined string of the FE and steady-state solvers

"""

use_regular, use_steady = determine_diffusion_existence(

diffusing_elements)

if use_regular:

FE_solver = make_diffusion_FE(diffusing_elements, celltypes,

flag_2d)

else:

FE_solver = ""
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if use_steady:

steady_state_solver = make_diffusion_steady(diffusing_elements,

flag_2d)

else:

steady_state_solver = ""

return FE_solver + steady_state_solver

def determine_diffusion_existence(diffusing_elements):

steadys = []

for _, item in diffusing_elements.items():

steadys.append(item["use_steady_state"])

if not bool(len(steadys)):

return False, False

steady = any(steadys)

regular = any([not el for el in steadys])

return regular, steady

def make_diffusion_FE(diffusing_elements, celltypes, flag_2d):

"""

Converts a dictionary of diffusion properties into a CC3D

DiffusionSolverFE XML

configuration string. T

This function generates an XML string that can be used to configure

CC3D's DiffusionSolverFE. It

takes three

arguments: diffusing_elements, celltypes, and flag_2d.

diffusing_elements is a

dictionary of the diffusing

elements, where each key is the name of the diffusing element and

the corresponding value is

another dictionary
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containing the properties of that element, such as the diffusion

constant and initial

concentration. celltypes is a

list of the cell types, and flag_2d is a boolean indicating whether

the simulation is in two

dimensions or not.

The function loops through each diffusing element in the dictionary

and generates a string with

information about

the diffusion field, including its name, diffusion data (such as

diffusion and decay constants),

initial

concentration, and boundary conditions. It then concatenates these

strings together to create the

full XML string.

Parameters

----------

diffusing_elements : dict

A dictionary of diffusion properties. Each key represents a

diffusing element and

contains a nested dictionary

with keys "D", "gamma", "concentration_units", "D_w_units", "

D_og_unit", "gamma_w_units",

"gamma_og_unit",

"use_steady_state", "initial_condition", "dirichlet", "

dirichlet_value"

celltypes : list

A list of cell types.

flag_2d : bool

A boolean value indicating whether the simulation is in 2D or 3D

.
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Returns

-------

str

A string representation of the DiffusionSolverFE XML

configuration file.

"""

header = f'\n\n\t<Steppable Type="DiffusionSolverFE">\n\t\t<!-- The

conversion uses

DiffusionSolverFE and' \

f' SteadyStateDiffusionSolver ' \

f'by default. You may ' \

f'wish to use another diffusion solver-->\n'

full_str = header

for key, item in diffusing_elements.items():

if item["use_steady_state"]:

continue

name = key.replace(" ", "_")

# diffusion data

df_str = f'\t\t<DiffusionField Name="{name}">\n\t\t\t<

DiffusionData>\n\t\t\t\t<

FieldName>{name}</FieldName

>\n'

conc_units = f'\t\t\t\t<Concentration_units>{item["

concentration_units"]}</

Concentration_units>\n'

og_D = f'\t\t\t\t<Original_diffusion_constant D="{item["
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D_w_units"]}" units= "{item

["D_og_unit"]}"/>\n'

# conv = f'\t\t\t\t<CC3D_to_original units="(pixelˆ2/MCS)/(item

["D_og_unit"])">{item["

D_conv_factor"]}' \

# '</CC3D_to_original>'

D_str = f'\t\t\t\t<GlobalDiffusionConstant>{item["D"]}</

GlobalDiffusionConstant>\n'

og_g = f'\t\t\t\t<Original_decay_constant gamma="{item["

gamma_w_units"]}" units= "{

item["gamma_og_unit"]}"/>\n'

g_str = f'\t\t\t\t<GlobalDecayConstant>{item["gamma"]}</

GlobalDecayConstant>\n'

init_cond_warn = '\t\t\t\t<!-- CC3D allows for diffusing fields

initial conditions, if one

was detected it ' \

'will -->\n' \

'\t\t\t\t<!-- be used here. For several reasons

it may not

work, if

something

looks wrong

with' \

' -->\n' \

'\t\t\t\t<!-- your diffusing field at the start

of the

simulation

this may be

the reason

.' \

' -->\n' \

'\t\t\t\t<!-- CC3D also allows the diffusing
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field

initial

condition

to be set

by a file.

' \

'Conversion of a -->\n' \

'\t\t\t\t<!-- PhysiCell diffusing field initial

condition

file into a

CC3D

compliant

one is ' \

'left as -->\n' \

'\t\t\t\t<!-- an exercise to the reader. -->\n'

init_cond = f'\t\t\t\t <InitialConcentrationExpression>{item["

initial_condition"]}<' \

f'/InitialConcentrationExpression>' \

'\n\t\t\t\t<!-- <ConcentrationFileName>INITIAL CONCENTRATION

FIELD - typically a

file with ' \

'path Simulation/NAME_OF_THE_FILE.txt</ConcentrationFileName

> -->'

het_warning = "\n\t\t\t\t<!-- CC3D allows the definition of D

and gamma on a cell type

basis: -->\n"

cells_str = ""

for t in celltypes:

cells_str += f'\t\t\t\t<!--<DiffusionCoefficient CellType="{

t}">{item["D"]}</

DiffusionCoefficient
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>-->\n'

cells_str += f'\t\t\t\t<!--<DecayCoefficient CellType="{t}">

{item["gamma"]}</

DecayCoefficient>-->\n'

close_diff_data = "\t\t\t</DiffusionData>\n"

# boundary conditions

bc_head = '\t\t\t<BoundaryConditions>\n\t\t\t\t<!-- PhysiCell

has either Dirichlet

boundary conditions (i.e. '

\

'constant ' \

'value) -->\n\t\t\t\t<!-- or "free floating" boundary

conditions (i.e.,

constant flux = 0)

. -->' \

'\n\t\t\t\t<!-- CC3D ' \

'allows ' \

'for more control of boundary conditions, you may want

to revisit the

issue. -->\n'

if item['dirichlet']:

bc_body = f'\t\t\t\t<Plane Axis="X">\n\t\t\t\t\t<

ConstantValue

PlanePosition="Min"

Value=' \

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<

ConstantValue

PlanePosition

="Max" Value='

\

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<!--
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Other options

are (examples)

: -->\n\t\t\t\

t\t' \

f'<!--<ConstantDerivative PlanePosition="Min"

Value="10.0"/>

-->\n\t\t\t\t

\t<!--' \

f'<ConstantDerivative PlanePosition="Max" Value="

10.0"/> -->\n\

t\t\t\t\t<!--<

Periodic/>-->'

\

'\t\t\t\t</Plane>\n' \

f'\t\t\t\t<Plane Axis="Y">\n\t\t\t\t\t<

ConstantValue

PlanePosition

="Min" Value='

\

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<

ConstantValue

PlanePosition

="Max" Value='

\

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<!--

Other options

are (examples)

: -->\n\t\t\t\

t\t' \

f'<!--<ConstantDerivative PlanePosition="Min"

Value="10.0"/>

-->\n\t\t\t\t

\t<!--' \
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f'<ConstantDerivative PlanePosition="Max" Value="

10.0"/> -->\n\

t\t\t\t\t<!--<

Periodic/>-->'

\

'\n\t\t\t\t</Plane>\n'

if not flag_2d:

bc_body += f'\t\t\t\t<Plane Axis="Z">\n\t\t\t\t\t<

ConstantValue

PlanePosition="Min"

Value=' \

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<

ConstantValue

PlanePosition="

Max" Value=' \

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<!-- Other

options are (

examples): -->\n\

t\t\t\t\t' \

f'<!--<ConstantDerivative PlanePosition="Min" Value="

10.0"/> -->\n\t\t

\t\t\t<!--' \

f'<ConstantDerivative PlanePosition="Max" Value="10.0

"/> -->\n\t\t\t\t

\t<!--<Periodic

/>-->' \

'\n\t\t\t\t</Plane>\n'

else:

bc_body = f'\t\t\t\t<Plane Axis="X">\n\t\t\t\t\t<

ConstantDerivative

PlanePosition="Min"

Value=' \

f'"0"/>\n\t\t\t\t\t<ConstantDerivative PlanePosition="Max"
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Value=' \

f'"0"/>\n\t\t\t\t\t<!-- Other options are (examples): -->\

n\t\t\t\t\t' \

f'<!--<ConstantValue PlanePosition="Min" Value="10.0"/>

-->\n\t\t\t\t\t<!--' \

f'<ConstantValue PlanePosition="Max" Value="10.0"/> -->\n\

t\t\t\t\t<!--<Periodic

/>-->' \

'\t\t\t\t</Plane>\n' \

f'\t\t\t\t<Plane Axis="Y">\n\t\t\t\t\t<ConstantDerivative

PlanePosition="Min"

Value=' \

f'"0"/>\n\t\t\t\t\t<ConstantDerivative PlanePosition="Max"

Value=' \

f'"0"/>\n\t\t\t\t\t<!-- Other options are (examples): -->\

n\t\t\t\t\t' \

f'<!--<ConstantValue PlanePosition="Min" Value="10.0"/>

-->\n\t\t\t\t\t<!--' \

f'<ConstantValue PlanePosition="Max" Value="10.0"/> -->\n\

t\t\t\t\t<!--<Periodic

/>-->' \

'\t\t\t\t</Plane>\n'

if not flag_2d:

bc_body += f'\t\t\t\t<Plane Axis="Z">\n\t\t\t\t\t<

ConstantDerivative

PlanePosition="Min"

Value=' \

f'"0"/>\n\t\t\t\t\t<ConstantDerivative PlanePosition

="Max" Value=' \

f'"0"/>\n\t\t\t\t\t<!-- Other options are (examples):

-->\n\t\t\t\t\t'

\

f'<!--<ConstantDerivative PlanePosition="Min" Value="
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10.0"/> -->\n\t\t

\t\t\t<!--' \

f'<ConstantDerivative PlanePosition="Max" Value="0.0

"/> -->\n\t\t\t\t

\t<!--<Periodic

/>-->' \

'\t\t\t\t</Plane>\n'

close_bc = "</BoundaryConditions>\n"

close_field = "</DiffusionField>\n"

full_field_def = df_str + conc_units + og_D + D_str + og_g +

g_str + init_cond_warn +

init_cond + het_warning +

cells_str + \

close_diff_data + bc_head + bc_body + close_bc

+

close_field

full_str += full_field_def

full_str += "</Steppable>\n"

return full_str

def make_diffusion_steady(diffusing_elements, flag_2d):

"""

Creates a steady-state diffusion solver configuration for CC3D

simulations based on the given

diffusing elements.

This function generates an XML string that can be used to configure

CC3D's steady state diffusion

solver. It takes

two arguments: diffusing_elements and flag_2d. diffusing_elements is

a dictionary of the diffusing

elements, where each key is the name of the diffusing element and
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the corresponding value is

another dictionary

containing the properties of that element, such as the diffusion

constant and initial

concentration. flag_2d is a

boolean indicating whether the simulation is in two dimensions or

not.

The function loops through each diffusing element in the dictionary

and generates a string with

information about

the diffusion field, including its name, diffusion data (such as

diffusion and decay constants),

initial

concentration, and boundary conditions. It then concatenates these

strings together to create the

full XML string.

Parameters

----------

diffusing_elements : dict

diffusing_elements : dict

A dictionary of diffusion properties. Each key represents a

diffusing element and

contains a nested dictionary

with keys "D", "gamma", "concentration_units", "D_w_units", "

D_og_unit", "gamma_w_units",

"gamma_og_unit",

"use_steady_state", "initial_condition", "dirichlet", "

dirichlet_value"

flag_2d : bool

A boolean indicating whether to use 2D or 3D solver.
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Returns

-------

str

A string containing the configuration for the steady-state

diffusion solver in CC3D

simulations.

"""

if flag_2d:

header = f'\n\n\t<Steppable Type="SteadyStateDiffusionSolver2D

">\n\t\t<!-- The conversion

uses ' \

f'DiffusionSolverFE and' \

f' SteadyStateDiffusionSolver ' \

f'by default. You may ' \

f'wish to use another diffusion solver-->\n'

else:

header = f'\n\n\t<Steppable Type="SteadyStateDiffusionSolver">\n

\t\t<!-- The conversion uses

' \

f'DiffusionSolverFE and' \

f' SteadyStateDiffusionSolver ' \

f'by default. You may ' \

f'wish to use another diffusion solver-->\n'

full_str = header

for key, item in diffusing_elements.items():

if not item["use_steady_state"]:

continue

name = key.replace(" ", "_")
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df_str = f'\t\t<DiffusionField Name="{name}">\n\t\t\t<

DiffusionData>\n\t\t\t\t<

FieldName>{name}</FieldName

>\n'

conc_units = f'\t\t\t\t<Concentration_units>{item["

concentration_units"]}</

Concentration_units>\n'

og_D = f'\t\t\t\t<Original_diffusion_constant D="{item["

D_w_units"]}" units= "{item

["D_og_unit"]}"/>\n'

D_str = f'\t\t\t\t<DiffusionConstant>{item["D"]}</

DiffusionConstant>\n'

og_g = f'\t\t\t\t<Original_decay_constant gamma="{item["

gamma_w_units"]}" units= "{

item["gamma_og_unit"]}"/>\n'

g_str = f'\t\t\t\t<DecayConstant>{item["gamma"]}</DecayConstant

>\n'

init_cond_warn = '\t\t\t\t<!-- CC3D allows for diffusing fields

initial conditions, if one

was detected it ' \

'will -->\n' \

'\t\t\t\t<!-- be used here. For several reasons

it may not

work, if

something

looks wrong

with' \

' -->\n' \

'\t\t\t\t<!-- your diffusing field at the start

of the

simulation
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this may be

the reason

.' \

' -->\n' \

'\t\t\t\t<!-- CC3D also allows the diffusing

field

initial

condition

to be set

by a file.

' \

'Conversion of a -->\n' \

'\t\t\t\t<!-- PhysiCell diffusing field initial

condition

file into a

CC3D

compliant

one is ' \

'left as -->\n' \

'\t\t\t\t<!-- an exercise to the reader. -->\n'

init_cond = f'\t\t\t\t <InitialConcentrationExpression>{item["

initial_condition"]}<' \

f'/InitialConcentrationExpression>' \

'\n\t\t\t\t<!-- <ConcentrationFileName>INITIAL CONCENTRATION

FIELD - typically a

file with ' \

'path Simulation/NAME_OF_THE_FILE.txt</ConcentrationFileName

> -->'

close_diff_data = "\t\t\t</DiffusionData>\n"

# boundary conditions
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bc_head = '\t\t\t<BoundaryConditions>\n\t\t\t\t<!-- PhysiCell

has either Dirichlet

boundary conditions (i.e. '

\

'constant ' \

'value) -->\n\t\t\t\t<!-- or "free floating" boundary

conditions (i.e.,

constant flux = 0)

. -->' \

'\n\t\t\t\t<!-- CC3D ' \

'allows ' \

'for more control of boundary conditions, you may want

to revisit the

issue. -->\n'

if item['dirichlet']:

bc_body = f'\t\t\t\t<Plane Axis="X">\n\t\t\t\t\t<

ConstantValue

PlanePosition="Min"

Value=' \

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<

ConstantValue

PlanePosition

="Max" Value='

\

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<!--

Other options

are (examples)

: -->\n\t\t\t\

t\t' \

f'<!--<ConstantDerivative PlanePosition="Min"

Value="10.0"/>

-->\n\t\t\t\t
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\t<!--' \

f'<ConstantDerivative PlanePosition="Max" Value="

10.0"/> -->\n\

t\t\t\t\t<!--<

Periodic/>-->'

\

'\t\t\t\t</Plane>\n' \

f'\t\t\t\t<Plane Axis="Y">\n\t\t\t\t\t<

ConstantValue

PlanePosition

="Min" Value='

\

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<

ConstantValue

PlanePosition

="Max" Value='

\

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<!--

Other options

are (examples)

: -->\n\t\t\t\

t\t' \

f'<!--<ConstantDerivative PlanePosition="Min"

Value="10.0"/>

-->\n\t\t\t\t

\t<!--' \

f'<ConstantDerivative PlanePosition="Max" Value="

10.0"/> -->\n\

t\t\t\t\t<!--<

Periodic/>-->'

\

'\n\t\t\t\t</Plane>\n'

if not flag_2d:
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bc_body += f'\t\t\t\t<Plane Axis="Z">\n\t\t\t\t\t<

ConstantValue

PlanePosition="Min"

Value=' \

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<

ConstantValue

PlanePosition="

Max" Value=' \

f'"{item["dirichlet_value"]}"/>\n\t\t\t\t\t<!-- Other

options are (

examples): -->\n\

t\t\t\t\t' \

f'<!--<ConstantDerivative PlanePosition="Min" Value="

10.0"/> -->\n\t\t

\t\t\t<!--' \

f'<ConstantDerivative PlanePosition="Max" Value="10.0

"/> -->\n\t\t\t\t

\t<!--<Periodic

/>-->' \

'\n\t\t\t\t</Plane>\n'

else:

bc_body = f'\t\t\t\t<Plane Axis="X">\n\t\t\t\t\t<

ConstantDerivative

PlanePosition="Min"

Value=' \

f'"0"/>\n\t\t\t\t\t<ConstantDerivative PlanePosition="Max"

Value=' \

f'"0"/>\n\t\t\t\t\t<!-- Other options are (examples): -->\

n\t\t\t\t\t' \

f'<!--<ConstantValue PlanePosition="Min" Value="10.0"/>

-->\n\t\t\t\t\t<!--' \

f'<ConstantValue PlanePosition="Max" Value="10.0"/> -->\n\

t\t\t\t\t<!--<Periodic
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/>-->' \

'\t\t\t\t</Plane>\n' \

f'\t\t\t\t<Plane Axis="Y">\n\t\t\t\t\t<ConstantDerivative

PlanePosition="Min"

Value=' \

f'"0"/>\n\t\t\t\t\t<ConstantDerivative PlanePosition="Max"

Value=' \

f'"0"/>\n\t\t\t\t\t<!-- Other options are (examples): -->\

n\t\t\t\t\t' \

f'<!--<ConstantValue PlanePosition="Min" Value="10.0"/>

-->\n\t\t\t\t\t<!--' \

f'<ConstantValue PlanePosition="Max" Value="10.0"/> -->\n\

t\t\t\t\t<!--<Periodic

/>-->' \

'\t\t\t\t</Plane>\n'

if not flag_2d:

bc_body += f'\t\t\t\t<Plane Axis="Z">\n\t\t\t\t\t<

ConstantDerivative

PlanePosition="Min"

Value=' \

f'"0"/>\n\t\t\t\t\t<ConstantDerivative PlanePosition

="Max" Value=' \

f'"0"/>\n\t\t\t\t\t<!-- Other options are (examples):

-->\n\t\t\t\t\t'

\

f'<!--<ConstantDerivative PlanePosition="Min" Value="

10.0"/> -->\n\t\t

\t\t\t<!--' \

f'<ConstantDerivative PlanePosition="Max" Value="10.0

"/> -->\n\t\t\t\t

\t<!--<Periodic

/>-->' \

'\t\t\t\t</Plane>\n'
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close_bc = "</BoundaryConditions>\n"

close_field = "</DiffusionField>\n"

full_field_def = df_str + conc_units + og_D + D_str + og_g +

g_str + init_cond_warn +

init_cond + \

close_diff_data + bc_head + bc_body + close_bc

+

close_field

full_str += full_field_def

full_str += "</Steppable>\n"

return full_str

B.8 Stepabble generation helper functions

def steppable_declaration(step_name, mitosis=False):

if not mitosis:

stype = "SteppableBasePy"

else:

stype = "MitosisSteppableBase"

return f"class {step_name}Steppable({stype}):\n"

def steppable_imports(user_data="", phenocell_dir=False):

if not phenocell_dir:

phenocell_dir = "C:\\PhenoCellPy"

imports = '''from cc3d.cpp.PlayerPython import *\nfrom cc3d import

CompuCellSetup

from cc3d.core.PySteppables import *\nimport numpy as np\n

'''

phenocell = f'''import sys\n

# IMPORTANT: PhysiCell has a concept of cell phenotype, PhenoCellPy (

https://github.com/JulianoGianlupi/

274



PhenoCellPy)

# has a similar implementation of phenotypes. You should install

PhenoCellPy to translate the

Phenotypes from PhysiCell.

# Then change the default path used below with your PhenoCellPy's

installation directory

sys.path.extend(['{phenocell_dir}'])

global pcp_imp

pcp_imp = False

try:

\timport PhenoCellPy as pcp

\tpcp_imp = True

except:

\tpass\n\n

user_data={user_data}\n\n

'''

return imports+phenocell

def steppable_init(frequency, mitosis=False):

if mitosis:

return mitosis_init(frequency)

return f'''\n\tdef __init__(self, frequency={frequency}):

\t\tSteppableBasePy.__init__(self,frequency)\n'''

def mitosis_init(frequency):

return f'''\n\tdef __init__(self,frequency={frequency}):

\t\tMitosisSteppableBase.__init__(self,frequency)\n'''

def steppable_start():

return '''

\tdef start(self):

\t\t"""

\t\tCalled before MCS=0 while building the initial simulation

\t\t"""

275



\t\tself.pixel_to_space = float(self.get_xml_element('pixel_to_space').

cdata) # pixel/[unit], see xml for

units

\t\tself.mcs_to_time = float(self.get_xml_element('mcs_to_time').cdata)

# MCS/[unit], see xml for units'''

def steppable_step():

step = '''

\tdef step(self, mcs):

\t\t"""

\t\tCalled every frequency MCS while executing the simulation

\t\t:param mcs: current Monte Carlo step

\t\t"""\n

'''

return step

def steppable_finish():

finish = '''

\tdef finish(self):

\t\t"""

\t\tCalled after the last MCS to wrap up the simulation. Good place to

close files and do post-processing

\t\t"""\n

'''

return finish

def steppable_on_stop():

stop = '''

\tdef on_stop(self):

\t\t"""

\t\tCalled if the simulation is stopped before the last MCS
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\t\t"""

\t\tself.finish()\n

'''

return stop

def _add_to_function(function, extra):

return function+'\n'+extra+'\n'

def add_to_init(init, additional_init):

return _add_to_function(init, additional_init)

def add_to_start(start, additional_start):

return _add_to_function(start, additional_start)

def add_to_step(step, additional_step):

return _add_to_function(step, additional_step)

def add_to_finish(finish, additional_finish):

return _add_to_function(finish, additional_finish)

def add_to_on_stop(on_stop, additional_on_stop):

return _add_to_function(on_stop, additional_on_stop)

def mitosis_update_attribute():

update = '''

\tdef update_attributes(self):

\t\tself.parent_cell.targetVolume /= 2.0

\t\tself.clone_parent_2_child()

'''

return update

B.9 Generate constraint loops helper function
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def get_dicts_for_type(ctype, cell_dicts):

ds = []

for d in cell_dicts:

if ctype in d.keys():

ds.append(d[ctype])

return ds

def cell_type_constraint(ctype, this_type_dicts):

if not this_type_dicts:

return ''

loop = f"\t\tfor cell in self.cell_list_by_type(self.{ctype.upper()}

):\n"

full = loop

for cell_dict in this_type_dicts:

for key, value in cell_dict.items():

if key == "phenotypes" and bool(cell_dict["phenotypes"]):

line = "\t\t\tif pcp_imp:\n"

line += f"\t\t\t\tcell.dict['{key}']=self.phenotypes['{

ctype}']\n"

line += f"\t\t\t\tcell.dict['current_phenotype'] = cell.

dict['{key}']" \

f"['{cell_dict['phenotypes_names'][0]}'].copy()\

n"

line += f"\t\t\t\tcell.dict['volume_conversion'] = cell.

targetVolume / \\\n"

\

f"\t\t\t\t\tcell.dict['current_phenotype'].

current_phase.

volume.total\n"

elif key == "custom_data":

line = f"\t\t\t# NOTE: you are responsible for finding

how this data" \
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f"is used in the original model\n\t\t\t# and re-

implementing

in CC3D" \

f"\n\t\t\tcell.dict['{key}']={value}\n"

elif type(value) == str:

line = f"\t\t\tcell.dict['{key}']='{value}'\n"

elif type(value) == dict:

clean_value = value.copy()

to_pop = []

for subkey in value.keys():

if "comment" in subkey:

to_pop.append(subkey)

[clean_value.pop(p) for p in to_pop]

line = f"\t\t\tcell.dict['{key}']={clean_value}\n"

else:

line = f"\t\t\tcell.dict['{key}']={value}\n"

if key in ["volume", "surface"]:

line += apply_CC3D_constraint(key, value)

full += line

return full + '\n\n'

B.10 Generating phenotype models initialization

def initialize_phenotypes(constraint_dict):

pheno_str = "\n\t\tif pcp_imp:\n"

pheno_str += "\t\t\tself.phenotypes = {}\n"

for ctype, cdict in constraint_dict.items():

if "phenotypes" in cdict.keys():

pheno_str += f"\t\t\tdt = 1/self.mcs_to_time\n"

pheno_str += f"\t\t\tself.phenotypes['{ctype}']" + "= {}\n"

for phenotype, data in cdict["phenotypes"].items():
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time_unit = "None"

if "rate units" in data.keys():

time_unit = data["rate units"].split("/")[-1]

fixed = []

duration = []

for fix, dur in data["phase durations"]:

duration.append(dur)

if fix == "TRUE":

ff = True

else:

ff = False

fixed.append(ff)

nuclear_fluid = []

nuclear_solid = []

cyto_fluid = []

cyto_solid = []

cyto_to_nucl = []

if 'fluid fraction' not in data.keys():

data['fluid fraction'] = [.75] * len(data["phase

durations"])

# if 'fluid fraction' not in data.keys():

# data['fluid fraction'] = [.75]*len(data["phase

durations"])

if 'fluid fraction' in data.keys() and 'nuclear volume'

in data.keys() and '

total' in data.keys

():

for fluid, nucl, total in zip(data['fluid fraction']

, data['nuclear

volume'], data['

total']):

nfl = fluid * nucl

nuclear_fluid.append(nfl)
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nuclear_solid.append(nucl - nfl)

cytt = total - nucl

cytf = fluid * cytt

cyts = cytt - cytf

cyto_fluid.append(cytf)

cyto_solid.append(cyts)

cyto_to_nucl.append(cytt / (1e-16 + nucl))

else:

nuclear_fluid = [None] * len(data["phase durations"]

)

nuclear_solid = [None] * len(data["phase durations"]

)

cyto_fluid = [None] * len(data["phase durations"])

cyto_solid = [None] * len(data["phase durations"])

cyto_to_nucl = [None] * len(data["phase durations"])

if 'calcified fraction' not in data.keys():

data['calcified fraction'] = [0] * len(data["phase

durations"])

if 'cytoplasm biomass change rate' not in data.keys():

data['cytoplasm biomass change rate'] = [None] * len

(data["phase

durations"])

if 'nuclear biomass change rate' not in data.keys():

data['nuclear biomass change rate'] = [None] * len(

data["phase

durations"])

if 'calcification rate' not in data.keys():

data['calcification rate'] = [None] * len(data["

phase durations"

])

if 'fluid change rate' not in data.keys():
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data['fluid change rate'] = [None] * len(data["phase

durations"])

pheno_str += \

f"\t\t\tphenotype = pcp.get_phenotype_by_name('{

phenotype}')\n"

pheno_str += f"\t\t\tself.phenotypes['{ctype}']['{

phenotype}'] =

phenotype(dt=dt, \n\

t\t\t\t" \

f"time_unit='{time_unit}', \n\t\t\t\tfixed_durations={

fixed}, " \

f"\n\t\t\t\tphase_durations={duration}, \n\t\t\t\t" \

f"cytoplasm_volume_change_rate={data['cytoplasm biomass

change rate']}, \n

\t\t\t\t" \

f"nuclear_volume_change_rate={data['nuclear biomass

change rate']}, \n\

t\t\t\t" \

f"calcification_rate={data['calcification rate']}, \n\t

\t\t\t" \

f"calcified_fraction={data['calcified fraction']}, \n\t

\t\t\t" \

f"target_fluid_fraction={data['fluid fraction']}, \n\t\

t\t\t" \

f"nuclear_fluid={nuclear_fluid}, \n\t\t\t\t" \

f"nuclear_solid={nuclear_solid}, \n\t\t\t\t" \

f"nuclear_solid_target={nuclear_solid}, \n\t\t\t\t" \

f"cytoplasm_fluid={cyto_fluid}, \n\t\t\t\t" \

f"cytoplasm_solid={cyto_solid}, \n\t\t\t\t" \

f"cytoplasm_solid_target={cyto_solid}, \n\t\t\t\t" \

f"target_cytoplasm_to_nuclear_ratio={cyto_to_nucl}, \n\

t\t\t\t" \

f"fluid_change_rate={data['fluid change rate']})\n"
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return pheno_str
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APPENDIX C

PHENOCELLPY APPENDIX

C.1 PhenoCellPy Python implementation

Besides defining several methods and functions to drive PhenoCellPy, we allow users to de-

fine custom functions. The user-definable functions are: entry function(*args) ,

exit function(*args) , arrest function(*args) ,

user phenotype time step(*args) ,

user phase time step(*args) . Which are executed at Phase entry, Phase exit,

to determine if a cell should exit the Phenotype and enter senescence (see Sections 5.2.2

and 5.2.3), and at each time-step. We also allow the user to define the Phase transition

function (see Section 5.2.2.1). All functions that can be user-defined in PhenoCellPy must

accept any number of optional parameters (i.e., be a ”python args” function). For instance,

for viral infection the end of the eclipse phase will occur when a threshold of internal viral

load is reached [1], so the modeler would pass the intra-cellular viral load and the threshold

as arguments to the function. Some pre-packaged Phases (e.g., NecrosisSwell , S )

use the custom entry function to change their Cell Volume model target volumes.

We would like to note that, for formatting reasons, we’ve removed the docstrings and

most comments from the functions presented in this section. The actual source-code for

PhenoCellPy contains docstrings for all functions and comments where necessary.

C.1.1 Cellular Phase

The Phase is the ”base unit” of the Phenotype. Each Phase has as attributes a descrip-

tive name (e.g., S, G, M, necrotic swelling), an index (i.e. in which position of the se-
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quence of Phases it is), the index of the previous and next Phases, the time-step length

(dt), the name of the time unit (e.g., second, minute), how long the Phase should be (τ ,

” phase duration ” in the code, see Section 5.2.2.1 and C.1.1.4), a flag setting the tran-

sition to the next Phase to be stochastic or deterministic (see Section 5.2.2.1 and C.1.1.4),

a flag for mitosis or meiosis at phase exit, a flag for removal from the simulation at phase

exit (i.e., the cell dies, is killed, leaves the simulated domain). The Phase class also keeps

track of the amount of time the cell has spent in the current Phase (T ), and (optionally)

the volume of the cell in the simulation. Although the cell volume definition and update is

handled by the Cell Volume class (Section 5.2.1), the volume change rates is an attribute of

the Phase class. It’s important to note that the volume of the cell defined by PhenoCellPy’s

volume class may differ from the volume of the cell in the simulation.

The Phase class also has several functions defined, to time-step the model

(Section C.1.1.2), to update the cellular volume model (Section 5.2.1), to double the target

volume of the cellular volume model, and to evaluate if the transition to the next Phase

should occur (Section 5.2.2.1 and C.1.1.4). It also has place-holder functions that can be

replaced by user-defined ones, one that should be executed upon Phase entry

( entry function(*args) ), one just before Phase exit

( exit function(*args) ), one for exiting the Phenotype and entering senescence

( arrest function(*args) ), and one that is executed at each time-step

( user phase time step(*args) ), see Section C.1.2.4.

C.1.1.1 Phase class initialization

The Phase init function performs some checks on attribute values, e.g. dt > 0, a

negative or zero time-step makes no sense, the custom functions should be functions, and

so on. Initializes attributes to set values, and initializes the Cellular Volume model class.

The Phase init function is in Supplemental Materials C.2.
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C.1.1.2 Phase time-step

The Phase’s time-step function is responsible for incrementing T (total time the cell’s spent

in the current Phase, time in phase in the code) by dt. Then it calls the volume update

function and checks if the cell exits the Phenotype and goes into senescence. Finally, it

calls the Phase transition function (the default deterministic or stochastic, or a user-defined

function). It returns a tuple of two boolean flags, the first flags if the cell should go to the

next Phase in the Phenotype, the second if the cell should exit the Phenotype and enter

senescence. The Phase time-step function is shown in Listing 39.

C.1.1.3 Phases volume update

The volume update itself is handled by the Cell Volume class. As the volume change rates

are an attribute of the Phase class, however, the Phase class has its own intermediary update

volume function. This intermediary function’s job is to pass the rates to the Cell Volume’s

update volume function. The intermediary function is shown in Listing 40.

C.1.1.4 Phase Transition

The transition from one phase to the next can be either deterministic (with a set period) or

stochastic (with a set transition rate) by setting the Phase’s class attribute

” fixed duration ” to be True (deterministic) or False (stochastic). Based on the flag,

the Phase class sets its transition check function to be either

transition to next phase deterministic (for the deterministic case), List-

ing 41, or

transition to next phase stochastic (for the stochastic case), Listing 42.

By default, fixed duration is False , i.e., the default behavior is to use the stochas-

tic transition. A user can also define their own transition function that can take into account

other factors. As the Phase transition function can be defined by the user, our default tran-

sition functions must also have *args as its argument.
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1 def time_step_phenotype(self):

2 self.time_in_phase += self.dt

3 self.update_volume()

4 transition_to_index = None

5 if self.user_phase_time_step is not None:

6 self.user_phase_time_step(*self.user_phase_time_step_args)

7 if self.arrest_function is not None:

8 exit_phenotype = self.arrest_function(

9 *self.exit_function_args)

10 go_to_next_phase_in_phenotype = False

11 return go_to_next_phase_in_phenotype, exit_phenotype, \

12 transition_to_index

13 else:

14 exit_phenotype = False

15 go_to_next_phase_in_phenotype = \

16 self.check_transition_to_next_phase_function(

17 *self.check_transition_to_next_phase_function_args)

18 if hasattr(go_to_next_phase_in_phenotype, "len") and \

19 len(go_to_next_phase_in_phenotype) > 1:

20 transition_to_index = go_to_next_phase_in_phenotype[1]

21 go_to_next_phase_in_phenotype = \

22 go_to_next_phase_in_phenotype[0]

23 if go_to_next_phase_in_phenotype and self.exit_function is not \

24 None:

25 self.exit_function(*self.exit_function_args)

26 return go_to_next_phase_in_phenotype, exit_phenotype, \

27 transition_to_index

28 return go_to_next_phase_in_phenotype, exit_phenotype, \

29 transition_to_index

Listing 39: Phase class time-step function.

1 def update_volume(self):

2 self.volume.update_volume(self.dt, self.fluid_change_rate,

3 self.nuclear_volume_change_rate,

4 self.cytoplasm_volume_change_rate,

5 self.calcification_rate)

Listing 40: Phase class volume update intermediary function.
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1 def _transition_to_next_phase_deterministic(self, *none):

2 return self.time_in_phase > self.phase_duration

Listing 41: Deterministic transition function

1 def _transition_to_next_phase_stochastic(self, *none):

2 prob = 1 - exp(-self.dt / self.phase_duration)

3 return uniform() < prob

Listing 42: Stochastic transition function

C.1.2 Cellular Phenotype

The Phenotype class has as attributes a descriptive name (e.g., Standard necrosis model,

Flow Cytometry Basic), the time-step length (dt), the name of the time unit (e.g., second,

minute), a list of Phases that make the Phenotype, the index of the Starting Phase, an

optional ”stand-alone” senescent Phase (i.e., a Phase that is outside the Phenotype cycle),

the current Phase, and the amount of time spent in this Phenotype. Note that some of these

attributes are shared with the Phase class, the Phenotype class should pass these shared

attributes to its component Phases upon initialization.

This class has methods to time-step the phenotype model (Section C.1.2.2), to perform

user-defined time-step tasks, to change the phenotype phase to an arbitrary phase of the

phenotype cycle (Section C.1.2.3), to go to the next phase in the cycle (Section C.1.2.3),

and to go to a non-changing senescent phase (Section C.1.2.4).

C.1.2.1 Phenotype class initialization

The Phenotype init function performs sanity checks and initializes attributes.

Initialization of component Phases should be made in the Phenotype init function.

The Phenotype class init function is shown in Listing 43.
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1 def __init__(self, name: str = "unnamed", dt: float = 1,

2 time_unit: str = "min",

3 phases: list = None, senescent_phase: Phases.Phase or False = None,

4 starting_phase_index: int = 0):

5 self.name = name

6 self.time_unit = time_unit

7 if dt <= 0 or dt is None:

8 raise ValueError(f"'dt' must be greater than 0. Got {dt}.")

9 self.dt = dt

10 if phases is None:

11 self.phases = [Phases.Phase(previous_phase_index=0,

12 next_phase_index=0, dt=self.dt, time_unit=time_unit)]

13 else:

14 self.phases = phases

15 if senescent_phase is None:

16 self.senescent_phase = Phases.SenescentPhase(dt=self.dt)

17 elif senescent_phase is not None and not senescent_phase:

18 self.senescent_phase = False

19 elif not isinstance(senescent_phase, Phases.Phase):

20 raise ValueError(

21 f"`senescent_phase` must Phases.Phase object, False, or"

22 f" None."

23 f" Got {senescent_phase}")

24 else:

25 self.senescent_phase = senescent_phase

26 if starting_phase_index is None:

27 starting_phase_index = 0

28 self.current_phase = self.phases[starting_phase_index]

29 self.time_in_phenotype = 0

Listing 43: Phenotype class init function

C.1.2.2 Phenotype time-step

The first thing the Phenotype time-step function (Listing 44) does is check if the Phenotype

has just started (i.e., the time spent thus far in the Phenotype is 0), and if so it calls the initial

Phase entry function. Then it increments the ”amount of time spent in this Phenotype”

attribute ( time in cycle in the code) by dt, calls the current Phase’s time-step function

(Section C.1.1.2, and checks if the Phenotype should move to the next Phase or go to
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quiescence (as determined by the Phase’s time-step).

If the Phenotype should go to the next Phase it calls the go to next phase function

(Section C.1.2.3), if it should go to quiescence it calls the go to quiescence function

(Section C.1.2.4). The time-step function returns a tuple of three boolean flags, the values

of which can be determined by the go to next phase function. The first flag of the

tuple says if the Phenotype has changed Phases, the second if the simulated cell should be

removed from the simulation, and the third if the simulated cell has undergone cell division.

C.1.2.3 Switching Phases

The set phase function (Listing 45) is responsible for switching the Phase of a Pheno-

type, it does so by setting the current phase to be the phase of index i. It also ensures

that the Cell Volume sub-class attributes are correct in the case the cell has changed volume

while in the current Phase and resets T (the time spent in the Phase) to zero. Finally, it calls

the new Phase entry function if there is one.

The go to next phase (Listing 46) switches to the next Phase by calling

set phase with the current Phase’s ”next phase index” attribute. Before switching

Phases, it fetches the boolean flags for division and removal (e.g., death, leaving the sim-

ulation domain) at Phase exit. It returns a tuple of three boolean flags: Phase change, cell

removal from the simulation, and cell division.

1 def go_to_next_phase(self):

2 changed_phases = True

3 divides = self.current_phase.division_at_phase_exit

4 removal = self.current_phase.removal_at_phase_exit

5 self.set_phase(self.current_phase.next_phase_index)

6 return changed_phases, removal, divides

Listing 46: Phenotype Class go to next phase function
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1 def time_step_phenotype(self):

2 if not self.time_in_phenotype and \

3 self.current_phase.entry_function is not None:

4 self.current_phase.entry_function(

5 *self.current_phase.entry_function_args)

6 if self.user_phenotype_time_step is not None:

7 self.user_phenotype_time_step(

8 *self.user_pheno_time_step_args)

9 self.time_in_phenotype += self.dt

10 go_next_phase, exit_phenotype, transition_to_index = \

11 self.current_phase.time_step_phase()

12 if go_next_phase:

13 if transition_to_index is not None:

14 phase_idx = self.current_phase.index

15 old_next_phase_idx = \

16 self.current_phase.next_phase_index

17 self.current_phase.next_phase_index = \

18 transition_to_index

19 else:

20 phase_idx = None

21 changed_phases, cell_removed, cell_divides = \

22 self.go_to_next_phase()

23 if phase_idx is not None:

24 self.phases[phase_idx].next_phase_index = \

25 old_next_phase_idx

26 return changed_phases, cell_removed, cell_divides

27 elif exit_phenotype:

28 self.go_to_senescence()

29 changed_phases, cell_removed, cell_divides = (True, False,

30 False)

31 return changed_phases, cell_removed, cell_divides

32 changed_phases, cell_removed, cell_divides = (False, False,

33 False)

34 return changed_phases, cell_removed, cell_divides

Listing 44: Phenotype time-step function
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1 def set_phase(self, idx):

2 # get the current cytoplasm, nuclear, calcified volumes

3 cyto_solid = self.current_phase.volume.cytoplasm_solid

4 cyto_fluid = self.current_phase.volume.cytoplasm_fluid

5 nucl_solid = self.current_phase.volume.nuclear_solid

6 nucl_fluid = self.current_phase.volume.nuclear_fluid

7 calc_frac = self.current_phase.volume.calcified_fraction

8 # get the target volumes

9 target_cytoplasm_solid = \

10 self.current_phase.volume.cytoplasm_solid_target

11 target_nuclear_solid = \

12 self.current_phase.volume.nuclear_solid_target

13 target_fluid_fraction = \

14 self.current_phase.volume.target_fluid_fraction

15 # set parameters of next phase

16 self.phases[idx].volume.cytoplasm_solid = cyto_solid

17 self.phases[idx].volume.cytoplasm_fluid = cyto_fluid

18 self.phases[idx].volume.nuclear_solid = nucl_solid

19 self.phases[idx].volume.nuclear_fluid = nucl_fluid

20 self.phases[idx].volume.calcified_fraction = calc_frac

21 self.phases[idx].volume.cytoplasm_solid_target = \

22 target_cytoplasm_solid

23 self.phases[idx].volume.nuclear_solid_target = \

24 target_nuclear_solid

25 self.phases[idx].volume.target_fluid_fraction = \

26 target_fluid_fraction

27 # set phase

28 self.current_phase = self.phases[idx]

29 self.current_phase.time_in_phase = 0

30 if self.current_phase.entry_function is not None:

31 self.current_phase.entry_function(

32 *self.current_phase.entry_function_args)

Listing 45: Phenotype Class set phase function.
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C.1.2.4 Leaving the Phenotype

To exit the Phenotype the modeler has to define the optional arrest function which is a

member of the Phase class (Section 5.2.2). The arrest function is called by the Phase time-

step function (Section C.1.1.2) and its return value is used by the Phenotype time-step

function to exit the Phenotype cycle.

If the arrest function returns True , the Phenotype time-step calls go to senescence .

go to senescence checks that the Phenotype attribute senescent phase is a

class of type Phase, if that’s the case it sets the current phase to be the special senescent

Phase. If that’s not the case the function will simply return early.

Before the Phase change, go to quiescence saves the volume parameters to tem-

porary variables to keep them as they are after the change. As this is a change to a senes-

cent Phase, all target volumes of the Cell Volume sub-class are set to be the current actual

volumes (see Section 5.2.1 for definition of target volume and actual volumes). It resets

time in phase to be 0. The go to quiescence function is shown in Listing 47.
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1 def go_to_senescence(self):

2 if not isinstance(self.senescent_phase, Phases.Phase):

3 return

4 # get the current cytoplasm, nuclear, calcified volumes

5 cyto_solid = self.current_phase.volume.cytoplasm_solid

6 cyto_fluid = self.current_phase.volume.cytoplasm_fluid

7 nucl_solid = self.current_phase.volume.nuclear_solid

8 nucl_fluid = self.current_phase.volume.nuclear_fluid

9 calc_frac = self.current_phase.volume.calcified_fraction

10 # setting the senescent phase volume parameters.

11 # As the cell is now senescent it shouldn't want to change its

12 # volume, so we set the targets to be the current measurements

13 self.senescent_phase.volume.cytoplasm_solid = cyto_solid

14 self.senescent_phase.volume.cytoplasm_fluid = cyto_fluid

15 self.senescent_phase.volume.nuclear_solid = nucl_solid

16 self.senescent_phase.volume.nuclear_fluid = nucl_fluid

17 self.senescent_phase.volume.nuclear_solid_target = nucl_solid

18 self.senescent_phase.volume.cytoplasm_solid_target = cyto_solid

19 self.senescent_phase.volume.calcified_fraction = calc_frac

20 self.senescent_phase.volume.target_fluid_fraction = \

21 (cyto_fluid + nucl_fluid) / \

22 (nucl_solid + nucl_fluid + cyto_fluid + cyto_solid)

23 # set the phase to be senescent

24 self.current_phase = self.senescent_phase

25 self.current_phase.time_in_phase = 0

Listing 47: Phenotype Class go to quiescence function.

C.1.3 Cellular Volume

The update volume function is shown in Listing 48. It takes as arguments, in order,

the time-step length (dt), rF , rNS , rCS , and rC . For stability reasons, we use SciPy’s

odeint function [75] to solve the volume dynamics, together with an intermediary func-

tion volume relaxation (see Listing 49).

C.1.3.1 Cellular Volume defaults and init function

The Cellular Volume init function checks if the user defined custom values, checks

that they are sensible (e.g., that there are no negative volume, or fractional volumes /∈
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1 def update_volume(self, dt, fluid_change_rate,

2 nuclear_volume_change_rate,

3 cytoplasm_volume_change_rate, calcification_rate):

4 dt_array = array([0, dt])

5 self.fluid = odeint(self.volume_relaxation, self.fluid,

6 dt_array,

7 args=(fluid_change_rate,

8 self.target_fluid_fraction * self.total))\

9 [-1][0]

10 self.nuclear_fluid = (self.nuclear / (self.total + 1e-12)) * \

11 self.fluid

12 self.cytoplasm_fluid = self.fluid - self.nuclear_fluid

13 self.nuclear_solid = odeint(self.volume_relaxation,

14 self.nuclear_solid,

15 dt_array,

16 args=(nuclear_volume_change_rate,

17 self.nuclear_solid_target))[-1][0]

18 self.cytoplasm_solid_target = \

19 self.target_cytoplasm_to_nuclear_ratio * \

20 self.nuclear_solid_target

21 self.cytoplasm_solid = odeint(

22 self.volume_relaxation,

23 self.cytoplasm_solid, dt_array,

24 args=(cytoplasm_volume_change_rate,

25 self.cytoplasm_solid_target))[-1][0]

26 self.solid = self.nuclear_solid + self.cytoplasm_solid

27 self.nuclear = self.nuclear_solid + self.nuclear_fluid

28 self.cytoplasm = self.cytoplasm_fluid + self.cytoplasm_solid

29 self.calcified_fraction = odeint(

30 self.volume_relaxation,

31 self.calcified_fraction, dt_array,

32 args=(calcification_rate, 1))[-1][0]

33 self.total = self.cytoplasm + self.nuclear

34 self.fluid_fraction = self.fluid / (self.total + 1e-12)

Listing 48: Cell Volume class update volume function.
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1 @staticmethod

2 def volume_relaxation(current_volume, t, rate, target_volume):

3 dvdt = rate * (target_volume - current_volume)

4 return dvdt

Listing 49: Intermediary volume relaxation function.

[0, 1]), and initializes the class’ attributes.
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C.2 Phase init function

def __init__(self, index: int = None, previous_phase_index: int = None,

next_phase_index: int = None, dt: float = None,

time_unit: str = "min", name: str = None,

division_at_phase_exit: bool = False,

removal_at_phase_exit: bool = False, fixed_duration: bool = False,

phase_duration: float = 10, entry_function=None,

entry_function_args: list = None,

exit_function=None, exit_function_args: list = None,

arrest_function=None,

arrest_function_args: list = None, transition_to_next_phase=None,

transition_to_next_phase_args: list = None,

simulated_cell_volume: float = None,

cytoplasm_volume_change_rate=None,

nuclear_volume_change_rate=None, calcification_rate=None,

target_fluid_fraction=None, nuclear_fluid=None, nuclear_solid=None,

nuclear_solid_target=None, cytoplasm_fluid=None,

cytoplasm_solid=None,

cytoplasm_solid_target=None, target_cytoplasm_to_nuclear_ratio=None,

calcified_fraction=None, fluid_change_rate=None,

relative_rupture_volume=None):

if index is None:

self.index = 0

else:

self.index = index

self.previous_phase_index = previous_phase_index

self.next_phase_index = next_phase_index

self.time_unit = time_unit

if dt is None or dt <= 0:

raise ValueError(f"'dt' must be greater than 0. Got {dt}.")

self.dt = dt
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if name is None:

self.name = "unnamed"

else:

self.name = name

self.division_at_phase_exit = division_at_phase_exit

self.removal_at_phase_exit = removal_at_phase_exit

self.fixed_duration = fixed_duration

if phase_duration <= 0:

raise ValueError(f"'phase_duration' must be greater than 0."

f" Got {phase_duration}")

self.phase_duration = phase_duration

self.time_in_phase = 0

self.entry_function = entry_function

self.entry_function_args = entry_function_args

self.exit_function = exit_function

self.exit_function_args = exit_function_args

if self.exit_function is not None and \

not (type(self.exit_function_args) == list or

type(self.exit_function_args) == tuple):

raise TypeError("Exit function defined but no args given. "

f"Was expecting "

f"'exit_function_args' to be a list or tupple,"

f" got {type(exit_function_args)}.")

self.arrest_function = arrest_function

self.arrest_function_args = arrest_function_args

if self.arrest_function is not None and \

type(self.arrest_function_args) != list:

raise TypeError("Arrest function defined but no args given."

"Was expecting "

f"'arrest_function_args' to be a list,"

f"got {type(arrest_function_args)}.")
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if transition_to_next_phase is None:

self.transition_to_next_phase_args = [None]

if fixed_duration:

self.transition_to_next_phase = \

self._transition_to_next_phase_deterministic

else:

self.transition_to_next_phase = \

self._transition_to_next_phase_stochastic

else:

if type(transition_to_next_phase_args) != list:

raise TypeError("Custom exit function selected but no args "

"given. Was expecting "

"'transition_to_next_phase_args' to be a"

" list, got "

f"{type(transition_to_next_phase_args)}.")

self.transition_to_next_phase_args = \

transition_to_next_phase_args

self.transition_to_next_phase = transition_to_next_phase

if simulated_cell_volume is None:

self.simulated_cell_volume = 1

else:

self.simulated_cell_volume = simulated_cell_volume

# the default rates are reference values for MCF-7, in 1/min

if cytoplasm_volume_change_rate is None:

self.cytoplasm_volume_change_rate = 0.27 / 60.0

else:

self.cytoplasm_volume_change_rate = cytoplasm_volume_change_rate

if nuclear_volume_change_rate is None:

self.nuclear_volume_change_rate = 0.33 / 60.0

else:

self.nuclear_volume_change_rate = nuclear_volume_change_rate

if calcification_rate is None:
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self.calcification_rate = 0

else:

if calcification_rate < 0:

raise ValueError(f"`calcification_rate` must be >= 0,"

f" got {calcification_rate}")

self.calcification_rate = calcification_rate

if fluid_change_rate is None:

self.fluid_change_rate = 3.0 / 60.0

else:

self.fluid_change_rate = fluid_change_rate

self.volume = \

CellVolumes(

target_fluid_fraction=target_fluid_fraction,

nuclear_fluid=nuclear_fluid,

nuclear_solid=nuclear_solid,

nuclear_solid_target=nuclear_solid_target,

cytoplasm_fluid=cytoplasm_fluid,

cytoplasm_solid=cytoplasm_solid,

cytoplasm_solid_target=cytoplasm_solid_target,

target_cytoplasm_to_nuclear_ratio=

target_cytoplasm_to_nuclear_ratio,

calcified_fraction=calcified_fraction,

relative_rupture_volume=relative_rupture_volume)
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C.3 Phase init function

def __init__(self, target_fluid_fraction=None, nuclear_fluid=None,

nuclear_solid=None,

nuclear_solid_target=None,cytoplasm_fluid=None,

cytoplasm_solid=None,

cytoplasm_solid_target=None,

target_cytoplasm_to_nuclear_ratio=None,

calcified_fraction=None, relative_rupture_volume=None):

_total = 2494

_fluid_fraction = .75

_fluid = _fluid_fraction * _total

_solid = _total - _fluid

_nuclear = 540

_nuclear_fluid = _fluid_fraction * _nuclear

_nuclear_solid = _nuclear - _nuclear_fluid

_cytoplasm = _total - _nuclear

_cytoplasm_fluid = _fluid_fraction * _cytoplasm

_cytoplasm_solid = _cytoplasm - _cytoplasm_fluid

_calcified_fraction = 0

_relative_rupture_volume = 100

if target_fluid_fraction is None:

self.target_fluid_fraction = _fluid_fraction

else:

if not 0 <= target_fluid_fraction <= 1:

raise ValueError(f"`target_fluid_fraction` must be in "

f"range [0, 1]. Got {target_fluid_fraction}")

self.target_fluid_fraction = target_fluid_fraction

if nuclear_fluid is None:

self.nuclear_fluid = _nuclear * self.target_fluid_fraction

else:

if nuclear_fluid < 0:

raise ValueError(f"`nuclear_fluid` must be >=0."
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f" Got {nuclear_fluid}")

self.nuclear_fluid = nuclear_fluid

if nuclear_solid is None:

self.nuclear_solid = _nuclear * (1 - self.target_fluid_fraction)

else:

if nuclear_solid < 0:

raise ValueError(f"`nuclear_solid` must be >=0."

f" Got {nuclear_solid}")

self.nuclear_solid = nuclear_solid

if nuclear_solid_target is None:

self.nuclear_solid_target = self.nuclear_solid

else:

if nuclear_solid_target < 0:

raise ValueError(f"`nuclear_solid_target` must be >=0."

" Got {nuclear_solid_target}")

self.nuclear_solid_target = nuclear_solid_target

if cytoplasm_fluid is None:

self.cytoplasm_fluid = _cytoplasm * self.target_fluid_fraction

else:

self.cytoplasm_fluid = cytoplasm_fluid

if cytoplasm_solid is None:

self.cytoplasm_solid = _cytoplasm * (1 - self.

target_fluid_fraction)

else:

self.cytoplasm_solid = cytoplasm_solid

if cytoplasm_solid_target is None:

self.cytoplasm_solid_target = self.cytoplasm_solid

else:

self.cytoplasm_solid_target = cytoplasm_solid_target

self.cytoplasm = self.cytoplasm_fluid + self.cytoplasm_solid

self.nuclear = self.nuclear_fluid + self.nuclear_solid

if target_cytoplasm_to_nuclear_ratio is None:

self.target_cytoplasm_to_nuclear_ratio = \
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self.cytoplasm / (1e-16 + self.nuclear)

else:

self.target_cytoplasm_to_nuclear_ratio = \

target_cytoplasm_to_nuclear_ratio

if calcified_fraction is None:

self.calcified_fraction = _calcified_fraction

else:

self.calcified_fraction = calcified_fraction

if relative_rupture_volume is None:

self.relative_rupture_volume = _relative_rupture_volume

else:

self.relative_rupture_volume = relative_rupture_volume

self.fluid = self.cytoplasm_fluid + self.nuclear_fluid

self.solid = self.cytoplasm_solid + self.nuclear_solid

self.total = self.nuclear + self.cytoplasm

self.fluid_fraction = self.fluid / self.total

self.rupture_volume = self.relative_rupture_volume * self.total
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C.4 Ki-67 Basic Cycle Improved Division Implementation in CompuCell3D

Note: we have removed the implementation of population statistics, data saving, and plots

from the code presented here. In places this would cause an error we have added a pass

statement. The model that comes packaged with PhenoCellPy does include population

statistics, data saving, and plots.

from cc3d.cpp.PlayerPython import *

from cc3d import CompuCellSetup

from cc3d.core.PySteppables import *

from numpy import median, quantile, nan

import sys

sys.path.extend(["C:\\PhenoCellPy"])

import Phenotypes as pheno

def Ki67pos_transition(*args):

# print(len(args), print(args))

# args = [cc3d cell volume, phase's target volume, time in phase,

phase duration

return args[0] >= args[1] and args[2] > args[3]

class ConstraintInitializerSteppable(SteppableBasePy):

def __init__(self, frequency=1):

SteppableBasePy.__init__(self, frequency)

self.track_cell_level_scalar_attribute(field_name='

phase_index_plus_1',

attribute_name='

phase_index_plus_1')

self.target_volume = None

self.doubling_volume = None

self.volume_conversion_unit = None

def start(self):

side = 10

304



self.target_volume = side * side

self.doubling_volume = 2 * self.target_volume

x = self.dim.x // 2 - side // 2

y = self.dim.x // 2 - side // 2

cell = self.new_cell(self.CELL)

self.cell_field[x:x + side, y:y + side, 0] = cell

dt = 5 # 5 min/mcs

ki67_basic_modified_transition = \

pheno.phenotypes.Ki67Basic(dt=dt,

transitions_to_next_phase=[None,

Ki67pos_transition],

transitions_to_next_phase_args=[None,

[-9, 1, -9, 1]])

self.volume_conversion_unit = self.target_volume / \

ki67_basic_modified_transition.current_phase.volume.total

for cell in self.cell_list:

cell.targetVolume = self.target_volume

cell.lambdaVolume = 2.0

pheno.utils.add_phenotype_to_CC3D_cell(cell,

ki67_basic_modified_transition)

cell.dict["phase_index_plus_1"] = \

cell.dict["phenotype"].current_phase.index + 1

self.shared_steppable_vars["constraints"] = self

class MitosisSteppable(MitosisSteppableBase):

def __init__(self, frequency=1):

MitosisSteppableBase.__init__(self, frequency)

self.constraint_vars = None

self.previous_number_cells = 0

self.plot = True

self.save = False

if self.save:

pass
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def start(self):

self.constraint_vars = self.shared_steppable_vars["constraints"]

if self.plot:

pass

def step(self, mcs):

if not mcs and self.plot:

pass

elif not mcs % 50 and \

len(self.cell_list) - self.previous_number_cells > 0 \

and self.plot:

pass

cells_to_divide = []

n_zero = 0

n_one = 0

volumes = []

time_spent_in_0 = []

time_spent_in_1 = []

for cell in self.cell_list:

volumes.append(cell.volume)

cell.dict["phenotype"].current_phase.simulated_cell_volume =

cell.volume

if cell.dict["phenotype"].current_phase.index == 0:

n_zero += 1

time_spent_in_0.append(cell.dict["phenotype"].

current_phase.

time_in_phase)

elif cell.dict["phenotype"].current_phase.index == 1:

n_one += 1

time_spent_in_1.append(cell.dict["phenotype"].

current_phase.

time_in_phase)

# args = [cc3d cell volume,

# doubling colume,
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# time in phase,

# phase duration]

args = [

cell.volume,

.9 * self.constraint_vars.doubling_volume,

# we use 90\% of the doubling volume because cc3d

cells

# will always be slightly below their target due to

the contact

energy

cell.dict["phenotype"].current_phase.time_in_phase \

+ cell.dict["phenotype"].dt,

cell.dict["phenotype"].current_phase.phase_duration]

cell.dict["phenotype"].current_phase.

transition_to_next_phase_args = \

args

changed_phase, should_be_removed, divides = \

cell.dict["phenotype"].time_step_phenotype()

converted_volume = \

self.constraint_vars.volume_conversion_unit * \

cell.dict["phenotype"].current_phase.volume.total

cell.targetVolume = converted_volume

if changed_phase:

cell.dict["phase_index_plus_1"] = \

cell.dict["phenotype"].current_phase.index + 1

if divides:

cells_to_divide.append(cell)

if self.save or self.plot:

pass

for cell in cells_to_divide:

# self.divide_cell_random_orientation(cell)

# Other valid options

# self.divide_cell_orientation_vector_based(cell,1,1,0)
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# self.divide_cell_along_major_axis(cell)

self.divide_cell_along_minor_axis(cell)

def update_attributes(self):

# resetting target volume

converted_volume = \

self.constraint_vars.volume_conversion_unit * \

self.parent_cell.dict["phenotype"].current_phase.volume.

total

self.parent_cell.targetVolume = converted_volume

self.clone_parent_2_child()

self.parent_cell.dict["phase_index_plus_1"] = \

self.parent_cell.dict["phenotype"].current_phase.index + 1

self.child_cell.dict["phase_index_plus_1"] = \

self.child_cell.dict["phenotype"].current_phase.index + 1

self.child_cell.dict["phenotype"].time_in_phenotype = 0

def on_stop(self):

self.finish()

def finish(self):

if self.save:

pass
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C.5 Ki-67 Basic Cycle Implementation in Tissue Forge

import tissue_forge as tf

import numpy as np

import sys

sys.path.extend(["C:\\PhenoCellPy"])

import Phenotypes as pheno

def get_radius_sphere(volume):

return ((1 / (np.pi * 4 / 3)) * volume) ** (1 / 3)

# potential cutoff distance

cutoff = 3

# space set up

dim = [50, 50, 50]

tf.init(dim=dim, cutoff=cutoff)

pot = tf.Potential.morse(d=3, a=5, min=-0.8, max=2)

# Particle types

mass = 40

radius = .4

global density

density = mass / ((4 / 3) * np.pi * radius * radius * radius)

dt = 10 # min/time step

ki67_basic = pheno.phenotypes.Ki67Basic(dt=dt)

global volume_conversion_unit

volume_conversion_unit = mass/ki67_basic.current_phase.volume.total

class CellType(tf.ParticleTypeSpec):

mass = mass

target_temperature = 0

radius = radius

dynamics = tf.Overdamped

cycle = ki67_basic

Cell = CellType.get()

tf.bind.types(pot, Cell, Cell)

rforce = tf.Force.random(mean=0, std=50)
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# bind it just like any other force

tf.bind.force(rforce, Cell)

first_cell = Cell([d // 2 for d in dim])

first_cell.cycle = ki67_basic

global cells_cycles

cells_cycles = {f"{first_cell.id}": ki67_basic}

def step_cycle_and_divide(event):

for p in Cell.items():

pcycle = cells_cycles[f"{p.id}"]

pcycle.current_phase.simulated_cell_volume = p.mass * density

phase_change, should_be_removed, division = pcycle.

time_step_phenotype()

radius = get_radius_sphere(

volume_conversion_unit*pcycle.current_phase.volume.total

)

# book-keeping, making sure the simulated cell grows

p.radius = radius

p.mass = ((4 / 3) * np.pi * radius * radius * radius) * density

# if division occurs, divide

if division:

print("@@@\nDIVISION\n@@@")

# save cell attribs to halve later

cur_mass = p.mass

# divide and reasign attribs (is this step necessary?)

child = p.split()

cells_cycles[f"{child.id}"] = ki67_basic

child.mass = p.mass = cur_mass / 2

child.radius = p.radius = get_radius_sphere((cur_mass / 2) /

density)

cells_cycles[f"{child.id}"].volume = child.mass * density

cells_cycles[f"{child.id}"].simulated_cell_volume = child.

mass * density

return 0
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tf.event.on_time(invoke_method=step_cycle_and_divide, period=.9*tf.

Universe.dt)

# run the simulator interactive

tf.run()
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[78] András Szabó and Roeland MH Merks. “Cellular potts modeling of tumor growth,

tumor invasion, and tumor evolution”. In: Frontiers in oncology 3 (2013), p. 87.

[79] Python Scripting Manual for CompuCell3D - version 4.2.4.

[80] Furkan;Sundus Kurtoglu. “Cycle Training App for PhysiCell”. In: (2020).

[81] Randy;Macklin Heiland. “PhysiCell biorobots simulation”. In: (2019).

[82] T.J. Sego et al. “Tissue Forge: Interactive Biological and Biophysics Simulation

Environment”. In: bioRxiv (2022).

[83] Juliano Ferrari Gianlupi. PhenoCellPy. Dec. 2022.

[84] MCF-7 - an overview | ScienceDirect Topics.

[85] Lucian P. Smith et al. “Antimony: a modular model definition language”. In: Bioin-

formatics 25.18 (Sept. 2009), pp. 2452–2454.

[86] Gautier Stoll et al. “MaBoSS 2.0: an environment for stochastic Boolean model-

ing”. In: Bioinformatics 33.14 (July 2017), pp. 2226–2228.

[87] MCF-10A Cell Line - an overview | ScienceDirect Topics.

[88] S R McKeown. “Defining normoxia, physoxia and hypoxia in tumours—implications

for treatment response”. In: BJR 87.1035 (Mar. 2014), p. 20130676.

[89] Geoffrey M. Cooper. “The Eukaryotic Cell Cycle”. In: The Cell: A Molecular Ap-

proach. 2nd edition (2000).

320



[90] Paul Macklin et al. “Patient-calibrated agent-based modelling of ductal carcinoma

in situ (DCIS): From microscopic measurements to macroscopic predictions of

clinical progression”. In: Journal of Theoretical Biology 301 (May 2012), pp. 122–

140.

[91] Paul Macklin, Shannon Mumenthaler, and John Lowengrub. “Modeling Multiscale

Necrotic and Calcified Tissue Biomechanics in Cancer Patients: Application to

Ductal Carcinoma In Situ (DCIS)”. In: Multiscale Computer Modeling in Biome-

chanics and Biomedical Engineering. Ed. by Amit Gefen. Studies in Mechanobi-

ology, Tissue Engineering and Biomaterials. Berlin, Heidelberg: Springer, 2013,

pp. 349–380. ISBN: 978-3-642-36482-2.

[92] Juliano Ferrari Gianlupi. Script for deploying CompuCell3D simulations as tools

in nanoHUB. Mar. 25, 2022.

[93] Kiri Choi et al. “Tellurium: An extensible python-based modeling environment for

systems and synthetic biology”. In: Biosystems 171 (Sept. 2018), pp. 74–79.

[94] Juliano Ferrari Gianlupi. Getting your tellurium project on nanohub. Nov. 19, 2021.

[95] Juliano Ferrari Gianlupi. CompuCell3D - 2D wet foam coarsening. Version 1.3.

2023.

[96] Juliano;Sego Ferrari Gianlupi. “CompuCell3D - Simulation of cell crawling in 3D”.

In: (2022).

[97] Juliano;T Ferrari Gianlupi. “CompuCell3D - Bacterium Macrophage”. In: (2019).

[98] Juliano Ferrari Gianlupi. “CompuCell3D - Avascular Tumor Growth and Muta-

tion”. In: (2023).

[99] Juliano;T Ferrari Gianlupi. “CompuCell3D Vascular Tumor”. In: (2019).

[100] Juliano;Sego Ferrari Gianlupi. “CompuCell3D v4 Main Tool”. In: (2020).

321



[101] Juliano;Sego Ferrari Gianlupi. “COVID-19 drug treatments explorer, CompuCell3D”.

In: (2021).

[102] Juliano;Sego Ferrari Gianlupi. “CompuCell3D - Chemotactic Elongation Demo”.

In: (2021).

[103] Juliano;Sego Ferrari Gianlupi. “FocalPointPlasticity Plugin Demo”. In: (2021).

[104] Juliano;Glazier Ferrari Gianlupi. “Cancer Evolution in CompuCell3D”. In: (2021).

[105] T. J. ;Aponte-Serrano Sego. “COVID 19 Virtual Tissue Model - Tissue Infection

and Immune Response Dynamics”. In: (2020).

[106] Juliano;Sego Ferrari Gianlupi. “CompuCell3d cell sorting in a hexagonal lattice”.

In: (2020).

[107] Juliano;Sego Ferrari Gianlupi. “CompuCell3D - Cells random walking at different

speeds”. In: (2020).

[108] Juliano;Sego Ferrari Gianlupi. “CompuCell3D - Delta-Notch signaling in a group

of cells”. In: (2020).

[109] Juliano;Sego Ferrari Gianlupi. “CompuCell3D - Simulation of angiogenesis”. In:

(2020).

[110] Juliano;Sego Ferrari Gianlupi. “CompuCell3D v4 - Bacterium Macrophage simu-

lation”. In: (2020).

[111] Juliano Ferrari Gianlupi. CompuCell3D - 2D wet foam coarsening with drainage.

Version 1.3. 2023.

[112] COPASI—a COmplex PAthway SImulator | Bioinformatics | Oxford Academic.

322



VITA

Juliano Ferrari Gianlupi

Education

– Ph.D. in Intelligent Systems Engineering

• Indiana University Bloomington, USA

• Concentration: Bioengineering

• Advisor: James A. Glazier

• Duration: Jan 2018 - Aug 2023

• Research Areas: agent-based multiscale modeling of cells and tissues, biological

dynamical systems, building infrastructure for nanoBIO.

– M.Sc. in Physics

• Federal University of Rio Grande do Sul, Brazil

• Advisor: Gilberto L. Thomas

• Duration: Jan 2016 - Dec 2017

– B.Sc. in Physics

• Federal University of Rio Grande do Sul, Brazil

• Duration: Jan 2011 - Dec 2015

Research Experience

– Intelligent Systems Engineering

• Projects: Developing agent-based models of cells to predict tissue-level biological

function and disease. Focused on modeling the spread of viral infection in tissues



and the cellular immune response. Coupling PK/PKPD simulations with agent-based

modeling. Modeling infrastructure development.

• Duration: Jan 2018 - Aug 2023

– Eli Lilly & Co., PK/PD and Pharmacometrics Team

• Project: investigation into a novel way of using available COVID-19 data under the

supervision of Dr. Emmanuel Chigutsa, in the PK/PD modeling team.

• Duration: May 2022 - Aug 2022

– Federal University of Rio Grande do Sul, Physics

• Project: soft-materials models to investigate the evolution of dry and wet foams, and

how the evolution changes with the liquid fraction

• Duration: Aug 2014 - Dec 2017

Teaching Experience

– Co-Instructor

• Indiana University Bloomington, Luddy SICE-ISE

• Jan 2020 - May 2020; Jan 2021 - May 2023

• Courses: Computational Modeling Methods for Virtual Tissues, Introduction to Com-

putational Bioengineering—Dynamics on Networks

– Workshop Instructor

• 2021 Virtual CompuCell3D User Training Workshop

• 2020 Virtual CompuCell3D User Training Workshop

• 2019 Virtual CompuCell3D User Training Workshop

• 2018 Virtual CompuCell3D User Training Workshop

• 2017 Virtual CompuCell3D User Training Workshop



Publications

– Journal Articles

• Gianlupi, J. F., Sego, T. J., Sluka, J. P., & Glazier, J. A. (2023). PhenoCellPy: A

Python package for biological cell behavior modeling. bioRxiv, 2023-04.

• Ferrari Gianlupi, J., Mapder, T., Sego, T. J., Sluka, J. P., Quinney, S. K., Craig, M.,

... & Glazier, J. A. (2022). Multiscale model of antiviral timing, potency, and het-

erogeneity effects on an epithelial tissue patch infected by SARS-CoV-2. Viruses,

14(3), 605.

• Sego, T. J., Aponte-Serrano, J. O., Gianlupi, J. F., & Glazier, J. A. (2021). Gener-

ation of multicellular spatiotemporal models of population dynamics from ordinary

differential equations, with applications in viral infection. BMC biology, 19(1), 1-24.

• Zarnitsyna, V. I., Gianlupi, J. F., Hagar, A., Sego, T. J., & Glazier, J. A. (2021).

Advancing therapies for viral infections using mechanistic computational models of

the dynamic interplay between the virus and host immune response. Current Opinion

in Virology, 50, 103-109.

• Sego, T. J., Aponte-Serrano, J. O., Ferrari Gianlupi, J., Heaps, S. R., Breithaupt,

K., Brusch, L., ... & Glazier, J. A. (2020). A modular framework for multiscale,

multicellular, spatiotemporal modeling of acute primary viral infection and immune

response in epithelial tissues and its application to drug therapy timing and effective-

ness. PLoS computational biology, 16(12), e1008451.

• de Lima, C. F., Gianlupi, J. F., Metzcar, J., & Zerick, J. (2020). Accelerated solving

of coupled, non-linear ODEs through LSTM-AI. arXiv preprint arXiv:2009.08278.

• Getz, Michael, et al. ”Iterative community-driven development of a SARS-CoV-2

tissue simulator.” BioRxiv (2020): 2020-04.

– Conferences

• APS 2023 March Meeting, March 2023, contributed talk



• 12th European Conference on Mathematical and Theoretical Biology, September

2022, contributed talk

• German Conference on Bioinformatics, September 2022, contributed talk

• IMAG/MSM Working Group (Multiscale Modeling and Viral Pandemics), February

2022, invited talk

• 2020 Society of Mathematical Biology, August 2020, Contributed Poster

– Computational Tools

• Script for deploying CompuCell3D simulations as tools in nanoHUB: Script to

make deployment of CompuCell3D simulations on nanoHUB, https://github

.com/JulianoGianlupi/cc3d-nanoHub-tool-maker

• CompuCell3D v4 Main Tool: Base tool for CompuCell3D version 4 and greater.

Includes running any of the demos included with CC3D, https://nanohub.or

g/tools/cc3dbase4x

• CompuCell3D - Bacterium Macrophage: online deployment of CompuCell3D

simulation of Macrophage hunting bacterium through a maze, https://nanohu

b.org/tools/cc3dbactmacro

• CompuCell3D - Simulation of cell crawling in 3D: Online deployment of Compu-

Cell3D simulation of cell crawling in 3D by Fortuna et al. 2020 https://doi.

org/10.1016/j.bpj.2020.04.024, https://nanohub.org/tools/

gltcellcrawl

• CompuCell3D - 2D wet foam coarsening: CompuCell3D Demo for a 2D foam

coarsening without drainage, https://nanohub.org/tools/cc3dwf

• CompuCell3D - 2D wet foam coarsening with drainage: CompuCell3D Demo for

a 2D foam coarsening with drainage, https://nanohub.org/tools/cc3d

wfdrain

• CompuCell3D v4 - Bacterium Macrophage simulation: Macrophage hunting bac-

terium through a maze using CompuCell3D v4, https://nanohub.org/tool

s/bacmacrocc3d4

https://github.com/JulianoGianlupi/cc3d-nanoHub-tool-maker
https://github.com/JulianoGianlupi/cc3d-nanoHub-tool-maker
https://nanohub.org/tools/cc3dbase4x
https://nanohub.org/tools/cc3dbase4x
https://nanohub.org/tools/cc3dbactmacro
https://nanohub.org/tools/cc3dbactmacro
https://doi.org/10.1016/j.bpj.2020.04.024
https://doi.org/10.1016/j.bpj.2020.04.024
https://nanohub.org/tools/gltcellcrawl
https://nanohub.org/tools/gltcellcrawl
https://nanohub.org/tools/cc3dwf
https://nanohub.org/tools/cc3dwfdrain
https://nanohub.org/tools/cc3dwfdrain
https://nanohub.org/tools/bacmacrocc3d4
https://nanohub.org/tools/bacmacrocc3d4


• CompuCell3D - Simulation of angiogenesis: CompuCell3D simulates angiogene-

sis using chemical signals, https://nanohub.org/tools/angiogencc3d

• CompuCell3D - Delta-Notch signaling in a group of cells: CompuCell3D can

solve individual cell’s ODE and have the information of one cell affect another (im-

plemented trough SBML), https://nanohub.org/tools/deltanotchcc

3d

• CompuCell3D - Cells random walking at different speeds: Cells random walking

at different speeds implemented through the motility plugin, https://nanohub.

org/tools/mot2ddemocc3d

• CompuCell3d cell sorting in a hexagonal lattice: Showcases hexagonal lattice use

in CompuCell3D by simulating cell sorting by difference in contact energies in a

hexagonal lattice, https://nanohub.org/tools/cellsorthexcc3d

• COVID 19 Virtual Tissue Model - Tissue Infection and Immune Response Dy-

namics: Simulates tissue and immune system interactions during a viral lung infec-

tion, https://nanohub.org/tools/cc3dcovid19

• Cancer Evolution in CompuCell3D: Demonstrates implemetation of cancer evolu-

tion in CompuCell3D, https://nanohub.org/tools/cancerevocc3d

• FocalPointPlasticity Plugin Demo: This simple demo shows basic functionality of

FocalPointPlasticity and how link rigidity affects cell behaviors, https://nano

hub.org/tools/cc3dfppdemo

• CompuCell3D - Chemotactic Elongation Demo: Implementation of Developmen-

tal biology 289.1 (2006): 44-54. and PLoS Comput Biol 4.9 (2008): e1000163,

https://nanohub.org/tools/cc3delongdemo

• COVID-19 drug treatments explorer, CompuCell3D: Explores possible drug treat-

ments for COVID-19; namelly viral entry inhibition and viral replication inhibition,

https://nanohub.org/tools/coviddrugexp

• CompuCell3D Vascular Tumor: Simulate 3D vascular tumor with CompuCell3D,

https://nanohub.org/tools/cc3dvasctumor

• CompuCell3D - Avascular Tumor Growth and Mutation: vascular tumor, grow-

ing on nutrient, self-limited, mutates, https://nanohub.org/tools/avas

https://nanohub.org/tools/angiogencc3d
https://nanohub.org/tools/deltanotchcc3d
https://nanohub.org/tools/deltanotchcc3d
https://nanohub.org/tools/mot2ddemocc3d
https://nanohub.org/tools/mot2ddemocc3d
https://nanohub.org/tools/cellsorthexcc3d
https://nanohub.org/tools/cc3dcovid19
https://nanohub.org/tools/cancerevocc3d
https://nanohub.org/tools/cc3dfppdemo
https://nanohub.org/tools/cc3dfppdemo
https://nanohub.org/tools/cc3delongdemo
https://nanohub.org/tools/coviddrugexp
https://nanohub.org/tools/cc3dvasctumor
https://nanohub.org/tools/avasctum
https://nanohub.org/tools/avasctum


ctum

Campus Activities

– Indiana Graduate Workers Coalition: Union Representative

• Jan 2022 - Dec 2022

– Indiana Graduate Workers Coalition: Social Media Manager

• Jan 2022 - Dec 2022

Languages

• Portuguese, native

• English, fluent

• Spanish, advanced

Skills

• Python

• R

• NONMEM

• COPASI

• Fortran 90

• C++

• PyThorch

• TensorFlow

• CompuCell3D

• PhysiCell

• Git

• LATEX

https://nanohub.org/tools/avasctum
https://nanohub.org/tools/avasctum

	Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Modeling SARS-CoV-2 Infection and Treatment
	Cross-Platform Validation

	An overview of the Sego-Aponte-Gianlupi COVID-19 model
	Introduction
	Overview of the Sego-Aponte-Gianlupi Model
	Epithelial cells in the Sego-Aponte-Gianlupi model
	Diffusion of Virus, Cytokines, and Oxidizing Chemical in the Sego-Aponte-Gianlupi Model
	Viral Life-Cycle Model
	Immune system model
	Preliminary Antiviral treatment

	Sego-Aponte-Gianlupi Selected Results
	Sego-Aponte-Gianlupi Discussion

	Multiscale Model of Antiviral Timing, Potency, and Heterogeneity Effects on an Epithelial Tissue Patch Infected by SARS-CoV-2
	Introduction
	Materials and Methods
	Changes to the Sego-Aponte-Gianlupi model
	Remdesivir physiologically based pharmacokinetic model
	Remdesivir mode of action (MOA) model
	Heterogeneous cellular metabolism of remdesivir modeling
	Simulating antiviral treatment regimens and treatment classification metrics

	Results
	Remdesivir PK model
	Variability of outcomes in Sego-Aponte-Gianlupi 's model
	Predictive treatment outcomes

	Discussion

	Translating model specifications
	Introduction
	Conceptual model differences between CompuCell3D and PhysiCell models
	An Overview of the Dynamics of CompuCell3D and PhysiCell
	Dynamics in CompuCell3D
	Dynamics in PhysiCell

	Implementation of the Translation Process
	Translating Space
	Translating Time
	Extracting Cell Types and Constraints
	Extracting Diffusing Elements
	Secretion and Uptake

	Challenges
	Appropriate Cell and Simulation Domain Sizes
	Appropriate Diffusion Parameters
	Cell-Cell Adhesion & Repulsion Implementation
	CPM Limitation on Cell Speed

	Generating the CompuCell3D Simulation
	Creating the XML file
	Creating Steppables File

	Results (example translations)
	Cell Cycle
	Biorobots

	Discussion
	Limitations & Future Work
	Software requirements


	PhenoCellPy: A Python package for biological cell behavior modeling
	Introduction
	PhenoCellPy Overview
	Cell Volume Class
	Phase Class
	Phenotype Class
	Using PhenoCellPy

	Pre-defined Phenotypes
	Simple Live Cycle
	Ki-67 Basic
	Ki-67 Advanced
	Flow Cytometry Basic
	Flow Cytometry Advanced
	Apoptosis Standard
	Necrosis Standard

	Selected Examples
	CompuCell3D
	Tissue Forge

	Selected Results
	CompuCell3D
	Tissue Forge

	Discussion
	Installation
	Planned features
	Requirements


	Discussion
	Other Infrastructure Work
	Future work
	Translator
	PhenoCellPy
	My Future Post-Doctoral Research


	Multiscale Model of Antiviral Timing, Potency, and Heterogeneity Effects on an Epithelial Tissue Patch Infected by SARS-CoV-2
	Simple PK model for Remdesivir and GS-443902
	COPASI Codes

	Table of parameters from Sego et. al
	Quantitative metrics of treatment outcome
	Instructions for running the multiscale CompuCell3D simulations and for analyzing the results
	CompuCell3D simulations
	Results analysis

	Supplementary results for the untreated simulations with different initial conditions
	Supplementary results from treatment initiation delay, antiviral potency, and GS-443902 half-life variation
	Homogeneous metabolism, regular GS–443902 half-life
	Homogeneous metabolism, halved GS–443902 half-life
	Homogeneous metabolism, GS–443902 half-life reduced by 75%
	Heterogeneous metabolism, regular GS–443902 half-life
	Heterogeneous metabolism using other standard deviations

	Supplementary results for viral production metabolism rate correlation

	Translating Model Specifications Appendix
	Converting Space Dimensions
	Converting Time Dimensions
	Converting Cell Types and Extracting Mechanics
	Cell Types Extraction
	Mechanics Extraction

	Converting Secretion and Uptake rates
	Re-scaling time
	Initial conditions
	Generating diffusion's XML
	Stepabble generation helper functions
	Generate constraint loops helper function
	Generating phenotype models initialization

	PhenoCellPy Appendix
	PhenoCellPy Python implementation
	Cellular Phase
	Cellular Phenotype
	Cellular Volume

	Phase init function
	Phase init function
	Ki-67 Basic Cycle Improved Division Implementation in CompuCell3D
	Ki-67 Basic Cycle Implementation in Tissue Forge

	References
	Curriculum Vitae

