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Abstract 

Angiogenesis, the growth and formation of capillaries form pre-existing vessels, is 

involved in various disease pathologies including brain cancer. Brain tumours are highly 

vascularised as they require new blood vessels to maintain oxygen and nutrition supply for their 

growth and survival. In recent years, molecular biology as well as imaging techniques have 

uncovered several aspects of angiogenesis and the vessel assembly process, based on which novel 

agents have been developed to target and counteract tumour-induced angiogenesis. However, many 

the guiding principles and molecular processes guiding angiogenic processes remain unknown and 

reliant on quantitative, computational models. Multiscale cellular automata models of angiogenesis 

have previously been employed but as new data become available, these generalized models can be 

refined to investigate particular aspects of angiogenic processes in different tissue environments.  

In this project, I developed multiscale multicellular models of angiogenic sprouting 

simulating cell migration and sprouting in response to VEGF and DLL4/NOTCH1 mediated 

endothelial tip cell selection in a neural tissue and vascularized tumour environment. The 

preliminary results I collected demonstrate that Compucell3D is a viable tool to emulate angiogenic 

sprouting in neural tissue. I identified some parameters including cell adhesion and volume which 

dramatically affect qualitative cellular responses including cell migration in my model. Future work 

emerging from complementary projects in the host lab will aimed to refine our current SBML and 

include Jagged/NOTCH1-4 contribution. Our approach employs a mix of in vitro and in silico 

experimentation whereby experiments can be repeated in vitro and results can be compared to the 

synthetic data created through computational modelling and, if correlating, confirm and expand the 

theory behind cellular processes. The tool can be taken further in a translational context with the 

simulation of anti-angiogenic treatment as well as the consideration of variables including time 

frame, dosage and tumour progression to investigate treatment strategies and aid in drug efficiency 

as well as planning clinical trials. Further, patient cells can be linked to experimental data in the 

future, and be used to predict likely treatment response and outcomes.  
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1. Introduction 

 

Angiogenesis, the growth and formation of capillaries form pre-existing vessels, is 

involved in various disease pathologies such as neurodegeneration, stroke and cancer (Qutub et al., 

2009). Angiogenesis in the brain and neurovascularisation, are regulated by pro- and anti-

angiogenic factors released by neurones and microglia, acting on brain endothelial cells 

(Karamysheva, 2008). In recent years, many molecules implicated in angiogenesis and its 

regulation have been identified, and novel agents have been developed to target and counteract 

angiogenesis in vascular disease, including brain cancers such as glioblastoma multiform (GBM) 

(Ahir et al., 2020).  Central Nervous System (CNS) tumours and brain tumours are some of the 

most complex cancers due to their classification, location, microenvironment and genetic 

background (Guarnaccia et al., 2018). In addition to growth and metastasis, brain tumours rely on 

angiogenesis to infiltrate surrounding tissue. In the case of a brain tumour, this can lead to a loss of 

cognitive and motor function. Based on the above, GBM have an extremely poor prognosis with a 

5-year survival rate of only 5% (Leon et al., 1996). An advanced understanding of angiogenic 

processes can help us develop better treatment approaches by suspending and reducing vascular 

supply and hereby preventing tumour growth and metastasis (Kim & Lee, 2009).  

Where molecular biology as well imaging techniques have uncovered several aspects of 

angiogenesis and the vessel assembly process, the guiding principles remain unknown and reliant 

on quantitative, computational models (Czirok, 2013).  

 

Within this project, a tool is developed to better understand angiogenesis by simulating 

brain endothelial cell behaviour and differentiation within a vascularised brain tumour environment 

as demonstrated in Figure 1.  
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Figure 1. Modelling angiogenic potential in a vascularised brain tumour environment. 

1) Vascularised brain tumour environment. 2) Inducing vessel formation: hypoxic cells secrete 

HIFI⍺, inducing VEGF mediated vessel growth through angiogenesis. 3) Angiogenesis: VEGF 

mediates endothelial stalk- and tip cell formation through Delta-NOTCH (DN) signalling. 

4) Translating angiogenic processes into a multi scale cellular automata simulation model: 

simulating VEGF secretion, DN patterning and tip cell formation and migration for vessel growth.  

(Created Using BioRender).  
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1.1 Angiogenesis 

 

Angiogenesis, is regulated by activator and inhibitor molecules (Nishida, 2006). As 

demonstrated in Figure 2 angiogenesis occurs when hypoxia-inducible factor 1 (HIF1) is up-

regulated in hypoxic cells and activates VEGF transcription factors. VEGF is then secreted by the 

cell, leading to VEGF-VEGFR binding on the capillary surface. This causes a change in vessel 

permeability and allows the tip cell, an activated endothelial cell, to break down the basement 

membrane whilst endothelial stalk cells proliferate underneath the tip cell. The leading edge of the 

living sprout then releases matrix metalloproteinases (MMPs), a family of enzymes which 

proteolytically degrade surrounding extracellular matrix (ECM) components (Rundhaug, 2005). 

 

 

Figure 2.  Angiogenesis (Adapted from Qutub et al., 2009). Hypoxic cells secrete HIF1, leading to 

VEGF secretion and VEGFR activation, and changes in vessel permeability. This allows endothelial 

tip cells to break the basement membrane, stalk cell proliferation and MMP release. (Created using 

BioRender).  
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Remodelling of the ECM through the degradation of the vascular basement membrane 

allows endothelial cells to migrate and access the surrounding tissue. MMPs further enhance 

angiogenesis by helping to detach pericytes from vessels undergoing angiogenesis; or inhibit 

angiogenesis through endogenous angiogenesis inhibitors; which has been implemented in early 

stages of clinical trials for anti-angiogenic drugs.  
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1.2 Endothelial Tip- and Stalk Cell Selection 

 

Vascular networks are formed through the shuffling and fusing of endothelial tip and 

stalk cells, which can be influenced by inflammatory environments through inflammatory 

cytokines, ECM-related microenvironment and metabolic cell division, as seen in cancers, through 

delta-like 4 (DLL4) and NOTCH (Toomey et al., 2009). Angiogenic endothelial tip- and stalk cell 

selection is regulated by the balance between various pro- and anti-angiogenic factors; as well as 

their downstream signalling networks (Chen, 2019). EC specification into stalk and tip cells is a 

dynamic phenotype rather than permanent cell fate, where endothelial cells compete for tip cell 

phenotypes and undergo changes within their metabolism, gene expression and response to 

extracellular signalling, as demonstrated in Table 1 (Kim et al., 2011).  

 

Table 1: Differential expression of genes and markers in endothelial cell phenotypes.  

Adapted from Chen et al., 2019.    

Phenotype Expressed Genes and Markers 

Tip cell  Adm Ankrd37 C1qtnf6 Cldn5 Col4a1 Col4a2 Cotl1 Dll4 Ednrb Fscn1 

Gpihbp1 Hspg2 Igfbp3 Inhbb Jup Kcne3 Kcnj8 Lama4 Lamb1 Lxn 

Marcksl1 Mcam Mest N4 bp3 Nid2 Notch4 Plod1 Plxnd1 Pmepa1 Ptn 

Ramp3 Rbp1 Rgcc Rhoc Trp53ill Unc5B VEGR2 VEGFR3   

Stalk Cell Ackr1 Aqp1 C1qtnf9 Cd36 Csrp2 Ehd4 Fbln5 Hspb1 Ligp1 Il6st 

Jam2 Lgals3 Lrg1 Meox2 Plscr2 Sdpr Selp Spint2 Tgfbi Tgm2 

Tmem176a Tmemt76b Tmem252 Tspan7 VEGFR1 Vwf     

 

 

On a molecular level, the extracellular microenvironment and VEGF receptor (VEGFR) 

expression levels on the cell surface induce the tip phenotype in endothelial cells, where endothelial 

cells with high levels of VEGFR2 and lower levels of VEGFR1 are more likely to adapt leading 
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positions, as illustrated in Figure 3. (Bentley et al., 2008; De Smet et al., 2009). Here, extracellular 

VEGFC activates VEGFR3, highly expressed in the tip cell phenotype, which down-regulates the 

VEGFR2 pathway. VEGFR regulates DLL4 levels which impact the up-stream regulation of 

NOTCH, the receptor for DLL4. This is key to tip cell selection as this relies on the DLL4-NOTCH 

signalling pathway which regulates competitive interactions and lateral inhibitions among tip and 

stalk cells. Tip cells receive more extracellular VEGF through VEGFR2 or VEGFR3 on the 

membrane and express higher levels of DLL4 and are more susceptible to NOTCH. The NOTCH 

signalling pathway on neighbouring cells is then activated; whereby neighbouring cells express 

lower levels of VEGFR2 and VEGFR3, and high levels of VEGFR1, causing the cells to keep low 

levels of DLL4 and remain stalk cells, unable to activate NOTCH and change phenotype. 
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Figure 3. Lateral Inhibition and Delta-Notch Signalling in Angiogenesis. 1) VEGF secretion in 

the extracellular microenvironment. 2) Cells with high VEGFR3 and low VEGFR1 expression take 

up more VEGF leading to VEGFR2 and DLL4 Receptor (NOTCH) up-regulation. 3) The tip cell 

phenotype develops through high levels of DLL4, due to high NOTCH expression, and activate the 

NOTCH signalling on neighbouring cells inducing low levels if VEGFR2,3 causing those to keep 

low levels of NOTCH receptors, inhibit DLL4 and adapt the stalk cell phenotype. 4) Stalk and Tip 

cell fates through DLL4. Adapted from Koon et al., 2018. (Created Using BioRender.) 

 

Concluding, a feedback loop pattern between VEGF, VEGFR, DLL4 and NOTCH 

patterns endothelial cell proliferation into tip- and stalk cell phenotypes by stabilising tip cells 

through NOTCH signalling in neighbouring cells (Weavers et al., 2014; Geudens et al., 2011). 

Additionally, the absence of NOTCH signalling causes a dysfunction of NOTCH-VEGFR 

feedback-mediated lateral inhibition and inhibits tip cell conversion. 
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1.3 Relevance Of Angiogenesis in Cancer Treatment 

 

Brain tumours are highly angiogenic and can be classified into two types: primary brain 

tumours, which originate in the brain, and secondary brain tumours, which metastasise from other 

cancers (Kim & Lee, 2009). Brain blood vessels are generally tightly organised and involved in the 

blood and brain barrier tissue exchange (Guyon et al., 2021). Within brain tumour vasculature, two 

types of blood vessels exist. Those are either formed from pre-existing vessels absorbed by the 

tumour and neoangiogenic vessels, or created through angiogenesis (Lakka and Rao, 2008; Chinot 

et al., 2014). GBM is the most common, vascularised and deadly brain tumours. Postoperative 

survival is shorter in patients with high tumour microvascular densities (MVDs) compared to those 

with lower densities, illustrating the significance of tumour vasculature for tumour growth and 

potential in anti-angiogenic treatment (Leon et al., 1996). Solid tumours growing beyond a critical 

size, 1-2 mm in diameter respectively, require new blood vessels to maintain oxygen and nutrition 

supply for their growth and survival; known as tumour-induced angiogenesis. The pro- and anti-

angiogenic factors controlling angiogenesis can be secreted by the ECM as well as cancer, stromal, 

endothelial and blood cells (Tandle et al., 2004). If pro- and anti-angiogenic molecules are well 

balanced, there is no angiogenic switch, meaning that angiogenesis is not induced. However, the 

balance of pro- and anti-angiogenic molecules is disrupted in a vascularised tumour environment 

and the enhanced expression of pro-angiogenic molecules leads to an uncontrolled promotion of 

angiogenesis (Fidler & Ellis, 2004).  This is often triggered by hypoxia, low oxygen concentrations, 

which is caused by the fast pace of tumour growth. Tumour hypoxia is seen in the expression of 

hypoxia-inducible factor-1 (HIF1) which regulates angiogenesis as seen in Figure 2, as well as 

glucose metabolism related gene expression. Further, VEGF and other factors such as VEGF 

mRNA, VEGFR1,2 which play key roles in angiogenesis are over-expressed in high grade gliomas. 

Additionally, neurotrophins nerve growth factor (NGF) and brain-derived neurotrophin factor 

(BDNF) enhance endothelial cell survival and proliferation (Nakamura et al., 2006).  
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Due to the high vascularisation and of GBM compared to lower grade gliomas and 

benign expansive lesions such as meningiomas (MNGs), this model of a vascularised tumour 

environment is based on GBM. Guarnaccia et al. (2018) demonstrated that endothelial cells from 

primary GBM show higher efficiency when forming complex vascular architecture, impairing the 

blood brain barrier (BBB) and over-expressing pro-angiogenic mediators. It was further 

demonstrated that anti-angiogenic treatment, such as emozolomide, sunitinib or bevacizumab 

triggers different proliferative, apoptotic and angiogenic response depending on dosage and 

timeframe. The study provided a wealth of new data that can be integrated in computational models 

to gain mechanistic insights and to identify most promising molecular targets through in-silico 

screenings.  

 

Based on the novel platform created by Guarnaccia et al. (2018), reproducing tumour 

vascularisation in a dish to allow the screening of drug resistance and sensitivity for targeted GBM 

therapy approaches, a computational model of a vascularised GBM environment is creatd to 

simulate changes in angiogenic potential. 
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1.4 Modelling Approaches Of Angiogenesis 

 

Tumour angiogenesis is a biologically and physically complex process, and even though 

temporary vessel regression is a clinically well-,known concept, few simulation models have 

succeeded in recreating it (Yanagisawa et al., 2021). Current tip- and stalk cell dynamics and 

formation model approaches range from compartment based models to cellular automata, cellular 

potts, stochastic differential equation and partial differential equation models. 

Mathematical simulation modelling is often used to explore mechanisms within tumour 

angiogenesis and predict cancer precession and therapeutic responses (Metzcar et al., 2019). Here, 

three types of models have been proposed. Firstly, the sole simulation of angiogenesis which can be 

seen in a model by Anderson et al. (1998). Secondly, the simulation of tumour growth and invasion 

sustained by angiogenesis, which has been modelled by Jiang et al. (2005), Peng et al. (2017) or 

Shirinifard et al. (2009). Finally, simulations integrating angiogenesis and tumour growth have been 

created through 3D models. Examples here are the models by Macklin et al. (2009), created to 

research ECM decomposition surrounding the tumour, and Tang et al. (2014), investigating 

chemotherapeutic drug delivery. These models identified several factors which inhibit or promote 

angiogenesis within a tumour microenvironment, however, regulating pro- and anti-angiogenic 

factors and their receptors remain poorly understood (Yanagisawa et al., 2021). 
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1.5 Computational Modelling Of Biological Processes 

 

Cellular modelling can range from studying a limited number of cells and specific 

morphologies in 2 dimensions (2D) to studying millions of cells in three dimensional (3D) 

simulated tissues (Metzcar et al., 2019). Individual cell modelling enables the direct translation of 

biological observations into simulation rules. This can be used to simulate oxygen, growth factor 

and treatment transport; used to connect microenvironmental conditions to cancer development. 

Computational modelling allows the generation of new insights and understanding, hypothesis 

testing and tracing chains of causation by merging different sets of information (Brodland, 2015). 

This can be done across various length scales such as multi-scale and multi-faceted models, which 

is often connected to gene expression, cell properties, tissue mechanics and cell phenotypes. 

There are two broad categories of computational modelling of angiogenesis: continuum 

and discrete (Milde, 2008). Continuum models describe average, larger scale cell population 

behaviour through a system of partial differential equations whereby capillary networks are 

described as endothelial cell densities. Even though they provide valuable insights in angiogenic 

processes, continuum models are limited in their ability to predict the structure of vascular 

networks. Discrete models, such as agent based, cellular automata and cellular Potts models, allow 

the incorporation of nutrients, oxygen and drug throughput and can be used for the study of the 

morphology of vascular networks. A summary of existing computational modelling approaches of 

angiogenesis can be found in Table 2.  
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Table 2. Computational Modelling Approaches of Angiogenesis. Taken from Qutub et al. (2009) 

Methodology Property (Molecular) Property (Cellular) Property (Tissue) 

Discrete    

Monte Carlo Steps VEGF Interaction   

VEGF–VEGFR    

2D Agent Based  FGF Chemotaxis Branching 

VEGF Cell migration, proliferation Capillary network formation 

PDGF   

Potts Model VEGF ECM interaction Branching 

VEGF diffusion  Capillary formation 

2-D random walk-

based models 
VEGF diffusion Cell migration, persistence  Branching 

VEGF degradation Chemotaxis Capillary network formation 

VEGF production Cell Density  

FGF   

Hybrid    

3D-Agent based  VEGF Endothelial cell dynamics Branching 

VEGF gradient  Chemotaxis Capillary formation 

DLL4   

2-D discrete Angiostatin  EC migration Branching 

 Chemotaxis Capillary formation 

 Matrix degradation  

 Cell-surface receptor binding  

 Cell-matrix interactions  

 Pericytes/macrophages  

Continuous     

Reaction-

Diffusion  
VEFG-VEFGR, VEGF-neuropilin 

interactions 
ECM interactions VEGF 

HIF1-alpha degradation MMP driven VEGF release VEGF-VEGFR interactions 

MMP interactions Matrix heterogeneity  Blood flow 

 HIF1-alpha autocrine synthesis O2 Transport 

Wave equations   EC interaction, proliferation, 

migration 
Capillary network formation  

Fractals    Capillary network formation  

  Comparison of tumour tissue and 

adjacent normal neurovascular 

network formation 
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1.4 Cellular Automata Modelling 

 

Cellular automata and agent-based models have made major breakthroughs in natural 

sciences within the last two decades through their simplicity, flexibility, and ability to incorporate 

both temporal and spatial dimensions resulting in aggregated behaviour, which cannot be modelled 

in any other form (Santé et al., 2010; Clarke, 2013). Cellular automata modelling has been applied 

in various real life sciences including mathematics, computer graphics and biology (Czerniak et al., 

2018). Cellular automata evolution takes place in a grid of identical cells, surrounded by each the 

same amount of neighbours (Burstedde et al., 2001). Grid and automata behaviour is influenced by 

three structural factors: space capacity, grid regularity and number of neighbouring cells. The first is 

dependent on the magnitude of the task at hand. The second is relies on the identity of the cells and 

therefore, directly influences the third as shown in Figure 4. 

 
 

  

Figure 4. Types of Cellular Automata Grids.  

Adapted from Czerniak et al. (2018). (Created Using BioRender) 
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A rule-based simulation in a lattice system can demonstrate cell behaviours and 

interactions, such as their migration or differentiation and their neighbours or environments, such as 

the ECM or microvasculature, respectively. Hereby the simulation if individual cell interactions and 

behaviour allows the observation of an emergent system’s behaviour as demonstrated in Figure 4.  

 

 

Figure 5. Cell behaviour in the lattice. Adapted from Hwang (2009). 

 

Cellular Automata Potts models, as seen in Figure 6, allow one biological cell to occupy 

more than one lattice site. This allows cells to change shape within the simulation. Multiple cell 

behaviours, such as division, necrosis, differentiation or migration, can be implemented on single 

cells, and implemented in the lattice and to observe single cell and cell population behaviour.  
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Figure 6. Cellular Automata, Potts and Large Potts Modelling.  

Adapted from Metzcar et al. (2019) and Alber et al. (2003).  

 

Cells can migrate at random to any of the neighbouring sites at multiple time points 

within the simulation (Checa & Prendergast, 2009). This can be implemented in a manner similar to 

a model by Ferreira et al. (2002), utilising the probability of migration as an increase factor of the 

amount of tumour cells, as the probability of migration increases with the level of nutrients 

received. Cell differentiation can be modelled by changing one cell type to another within its lattice 

site as seen in a mesenchymal stem cell differentiation model by Checa & Prendergast (2009). Here, 

differentiation relies on stimulus and local vascularity at maturation age. This can be taken further 

by modelling cell transitions based on cell arrangement and surrounding space as seen in a model of 

epithelial cell morphogenesis by Grant et al. (2006) where the extracellular environment is 

modelled through environmental factors such as oxygen concentrations or neighbours, and cellular 

responses are determined by their response network. Following the extensive opportunities in 

cellular modelling, a simulation model, which can be used as a tool to predict angiogenic potential 

based on interchangeable experimental data is developed.  

 

Cellular Automata Model Cellular Automata Potts Model 

1 1 1 1 2 2 5 5 5 5 5  

1 1 1 2 2 2 2 5 5 5 5  

1 1 2 2 2 2 5 5 5 5 5 

1 1 2 2 6 6 6 6 6 7 7  

3 3 3 4 4 4 4 7 7 7 7  

3 3 4 4 4 4 4 4 7 7 7  

q1  

One Lattice Site Per Cell! Multiple Lattice Sites Per Cell! Numbers = cell index values 

lines = cell boundaries 

2D Large Potts Model 
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1.4 Aims and Objectives 

 

To fulfil the overtaking aim of this project, (1) a simulated vascularised brain tumour 

environment including VEGF secretion is created, including DELTA-NOTCH signalling in 

response to VEGF secretion and endothelial tip cell formation. Further, (2) endothelial cell tip 

formation and migration is simulated and tracked, whilst implementing experimental data in form of 

previously obtained images of endothelial cells. The simulations will be created with Compucell3D 

(CC3D), using the built in plugins for cell manipulation and cell tracking. The model can be 

expanded and changed within its parameters to simulate changes in intracellular signalling in 

response to anti-angiogenic treatment responsiveness within angiogenic potential and tip cell 

formation based on literature. Results can then be tested in vitro utilising primary or iPSC-derived 

EC. Results can then be tested in-vitro utilising iPSC. Further, the model can be connected to 

ECPT, an endothelial cell processing tool developed to profile individual EC in their monolayers 

whilst providing relational and spatial information regarding cell behaviours including NOTCH 

activation or cell proliferation (Chesnais et al., 2021). 
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1.5 Project Relevance, Gaps In Literature And Translational Potential  

 

Today, we have limited tools to assess cell-to-cell interactions or measure their 

movements live in a strictly lab-based experimental environment. In a translational context, new 

anti-angiogenic treatment methods and enhanced efficacy could be achieved through a better 

understanding of angiogenesis through the simulation of influencing factors, mediators and drug 

and dosage schedules. By developing a tool to predict angiogenic potential for improved 

experimental design and prediction of treatment outcomes, the translational potential of 

understanding endothelial cell behaviour is a big step in the direction of personalised medicine and 

early treatment prognosis in the future. Currently, a third of cancer drugs are approved based on 

their response rate in small clinical trials, which is often only low or modest (Chen et al., 2019). 

Here, better understanding of endothelial cell behaviour, as well as cell-to-cell interactions under 

different conditions and across multiple levels of biological organisation in respect to space and 

time, could help eradicate early clinical trial errors and improve or even predict treatment outcomes. 

The flexibility of computational models enables quick testing of various hypotheses and 

experimental design changes, which could take months in strictly lab-based studies (Stepanova et 

al., 2021).  

Modelling in Compucell3D enables reusing, testing or adapting previous or published 

models to create synthetic data and build hypotheses. The computational approach can help avoid 

simple mistakes in early wet lab experimentation or clinical trials as well as further understand and 

develop the effectiveness of a drug in a specific context regarding its dosage, schedule, and targets.  
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2. Materials and Methods 

2.1 Computational Model Selection 

 

Where computational models cannot replace experiments or act as proof of mechanisms 

in given situations, they can demonstrate whether or not proposed mechanisms are sufficient to 

produce a phenomenon. Many of the aforementioned models can be implemented within specialised 

computational frameworks including CC3D and Morpheus. Where both CC3D and Morpheus work 

with SMBL (Systems Biology Markup Language) models, Morpheus’ is declarative and models 

from numerical implementation, using a declarative domain-specific markup language in both 

biological and Mathematical terms in C++ (Starruß et al., 2014). CC3D was chosen as it runs on 

Python, which is straight forward and much easier to learn in the given time frame. Further, CC3D 

utilises SMBL rather than CellML, as seen in MatLab, which is uses a ranked retrieval system 

whereby similarity measures are applied and adapted to measure similarities with existing models 

(Henkel et al., 2010). SBML is declarative and oriented towards describing biological 

processes.When supporting SBML as an out/input format, different tools can be used to operate 

within the model which decreases the probability of translation errors (Hucka et al., 2018). The 

selection of model and experimental process used is summarised in Figure 7. 
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Figure 7. Model Selection and Experimental Data Implementation. (Creating Using XMind.) 

 

CC3D is a muti-cell, multi-scale computational simulation method, which allows the 

study of multi-cell phenomena at the tissue scale through Monte Carlo multi-cell modelling and an 

open-source simulation environment. Models are based on biologically observed cell behaviours, 

interactions, and movements and allows rapid modelling and simulation within tissue formation and 

cellular dynamics (Swat et al., 2012). 
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2.2 Simulating Experimental Data 

 

Where many previously created mathematical and computational models of 

angiogenesis and angiogenic potential have had great impact on our understanding of the molecular 

processes behind it, this model is taking the idea further by utilising experimental data obtained in 

the Vascular Cell Dynamics Lab. Hereby we can test the theory and simulate angiogenic potential 

using our own data in form of images. Images are converted into Potts Initialisation File Format 

(PIFF) and implemented the simulation. Initialising a PIFF in the simulation overrides earlier data. 

Cell IDs are be assigned to the cells contained in the PIFF file and may take up multiple lines in the 

code. They translate to locations within a 3D ‘box’ or 2D lattice, as illustrated in Figure 8. Lattice 

boundaries stated within the code and declared cell types need to match the boundaries of the PIFF 

image file to be implemented the simulations.  
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Figure 8: Translating experimental data into synthetic data. Cell locations in previously 

obtained images of endothelial cells can be converted into the Potts Initialisation File Format (PIFF) 

and located within the ‘Box’ cell through their code line. One cell can occupy multiple lines and be 

initialised and simulated in Compucell3D. (Created Using BioRender.) 
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2.3 Cell Culture And Imaging  

 

In-vitro experiments and imaging was performed as described in Chesnais et al., 

Biorxiv 2021. In brief, primary human umbilical vein endothelial cells (HUVEC, PromoCell) , 

human aortic EC and human pulmonary microvascular EC (HUVEC, HAoEC, HPMEC, 

PromoCell) were cultured on 10 μg/mL fibronectin coated flasks (fibronectin from human plasma, 

PromoCell), grown in Endothelial Cell Growth Medium MV 2 (EGMV2, PromoCell) in absence of 

antibiotics and detached with Accutase (Thermo Fisher Scientific, Waltham, MA) used by passage 

5. Further, 4 × 104 ECs were seeded in fibronectin-coated 96-well plates (μclear, Greiner), cultured 

for 48 hours under basal (EGMV2, Promocell) or activated (EGMV2 + 50 ng/mL VEGFA, 

Peprotech) conditions in triplicate where EC formed confluent monolayers at the time of image 

acquisition and immunostaining. For immunostaining, cells were fixed with 2% paraformaldehyde 

in phosphate buffered saline (PBS) for 10 minutes at room temperature, blocked one hour with PBS 

supplemented with 1% fetal bovine serum (FBS), permeabilised with 0.1% Triton X 100 and 

incubated for another hour at room temperature with activated NOTCH (NICD, Abcam ab8925, 1 

μg/mL final) and primary antibodies against CDH5 (Ve-Cadherin Novusbio NB600-1409, 1 μg/mL 

final). EC lineage was tested utilising CDH5 and showed that all cells were CDH5+; NICD punch 

were released through anti-activated NOTCH1. Finally, plates are washed and incubated for one 

hour using secondary Alexa 488-conjugated antibody and Alexa-555-conjugated antibody 

(Thermo),  Phalloidin-Atto 647N (Sigma) and Hoechst 33342 (1 μg/mL, Sigma).  

Images were obtained using Operetta CLS system (PerkinElmer, Waltham, MA) 

equipped with a 40×water-immersion lens (NA 1.1). 3 areas were acquired in each well, whereby 

each area is composed of nine microscopic fields at 40× magnification. Acquisition parameters such 

as exposure time and LED power were standardised, and 3 intraexperiment replicates were 

conducted for each experiment.  
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2.4 Creating A Vascularised Tumour Environment 

 

After the image has been converted to PIFF format (2.2) it can be implemented, 

initialised and defined according to its cell properties as demonstrated in Figure 9. Further, a 

vascular wall of endothelial cells can be created within the XML code to simulate tumour 

angiogenesis within the vascular wall environment through VEGF secretion as a diffusion 

Steppable in XML and Python. 

 

 

Figure 9. Creating a Vascularised Tumour Environment in CC3D. 1) Defining cells from the 

image as Endothelial Cells (EC) in XML. 2) Creating the vascular wall in the simulation. 3) 

Simulating a vascularised tumour environment and tumour angiogenesis through VEGF secretion as 

VEGF diffusion. (Created Using BioRender.) 
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2.5 Simulating Delta-Notch Signalling in Response to VEGF 

 

As demonstrated in 1.2, Delta-Notch signalling plays a key role in angiogenesis and tip-

and stalk cell formation, leading to the creation of new vasculature. The contact mediated lateral 

inhibition as seen in Delta-Notch signalling can be constructed within a mathematical model, and 

applied to existing cells in CC3D. Collier et al. (1996) developed a mathematical model in 

accordance with experimental data, presupposing that receiving inhibition through NOTCH 

activation decreases the ability to produce Delta; and hereby inhibit Delta production in other cells. 

This introduces a feedback loop, amplifying differences between adjacent cells, generating patterns 

similar to living systems though initial and boundary conditions, as demonstrated in Figure 10. 

 

 

Figure 10. Mathematical Modelling of Delta-Notch signalling. Adapted from Collier et al. 

(1996) 

  

Based on the model by Collier et al. (1996), the parameters in the formula can be 

expanded mathematically to include the impact VEGF secretion and the intensity thereof. As 

demonstrated in Figure 11, this can be implemented within this simulation and applied to 

experimental data in PIFF format within the simulation, whereby Delta-NOTCH patterning and the 

following cell behaviour, such as stalk and tip cell formation can be observed.   
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Figure 11. Simulating Delta-Notch Signalling In Experimental Data. Previously obtained 

images are translated into PIFF format and initialised in simulation, Delta-Notch signalling in 

response to VEGF is implemented onto cells: 1) Lateral Inhibition and Delta-Notch Signalling in 

Angiogenesis: Cells with high VEGFR3 expression (later tip cells) take up more VEGF from their 

extracellular microenvironment, causing high DLL4 Receptor (NOTCH) expression and hereby 

high DLL4 uptake, activating the NOTCH signalling pathways and inhibiting DLL4 in 

neighbouring cells, forcing them to adapt the stalk cell phenotype. 2) Simplifying stalk-tip cell 

Delta-Notch Signalling. 3) Implementing DLL4-NOTCH signalling and inhibition in the simulation 

lattice through Steppables affecting neighbouring cells. 4) Implementing the Delta-Notch steppable 

in this simulation using previously obtained images in PIFF format. Adapted from Koon et al., 

2018. (Created Using BioRender.)  
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2.6 Simulating And Tracking Tip Cell Formation And EC Migration 

 

Tracking endothelial cell migration through tip cell formation caused by the Delta-

NOTCH-VEGF feedback loop is indicative of angiogenic potential and vessel stabilisation and can 

be simulated in CC3D. Here, cells can be tracked by their centre of mass through a plot whereby 

each tracking pixel is assigned a MCS value. The first, original location is coloured blue, and the 

following locations, a yellow and green gradient with a red tip, as demonstrated in Figure 12. 

 

 

Figure  12. Tracking Cell Migration Through A Cell’s Centre Of Mass. Experimental data is 

translated into the lattice through conversion and implementation of the image in PIFF format. 1) 

Creating a field ‘Centre of Mass’ (COM) for the cell (red). 2) Tracking COM movement in a field 

where blue represents the cell’s original location, red the most recent. (Creating Using BioRender.)  
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2.7 Implementing Theory In CC3D Code 

  

CC3D modelling is declared in Main (Python),which is used to import CC3D and 

Steppables into the Simulation; Steppables (Python) and XML (C++) files. When simulating the 

vascularised tumour environment and endothelial cells in the lattice, environmental condition such 

as VEGF secretion, cell adhesion and contact energy, cell size and surface, lattice and boundary 

conditions are defined in Plugins, Steppables and Potts in XML, as illustrated in Figure 13.  

 

 

Figure 13. Relevant components in modelling a vascularised tumour environment in XML. 

(Created Using XMind.) 

 

Following the creation of the extracellular environment and cell boundaries, Python 

Steppables are used to model cell-to-cell interactions such as Delta-NOTCH signalling, 
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environmental changes within the extracellular matrix such as VEGF secretion and the visualisation 

of this simulation model and cell tracking (Figure 14).  

 

 

Figure 14. Intent Of Selected Steppables (Python). (Created Using XMind.) 

 

Whilst creating the code, CC3D demo models were modified and implemented in order 

to model Delta-NOTCH signalling, VEGF secretion and Delta-NOTCH signalling in response to 

VEGF secretion leading to tip cell formation. Further demos were used to track cell migration and 

therefore endothelial tip cell formation. Demo models were imported from CC3D and modified 

according to cell types, simulation boundaries and other values. 
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3. Results  

 

In order to develop a tool to predict angiogenic potential in endothelial cells based on 

experimental data, a workflow has been developed. This includes the acquisition, imaging and 

conversion of experimental data in conjunction with the computational simulation of a vascularised 

tumour environment and visualisation of signalling pathways as illustrated in Figure 15.  

 

 

Figure 15. Project Workflow. (Created Using BioRender.) 
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3.1 Experimental Data 

 

HUVEC were seeded under low fetal bovine serum (FBS) conditions for 48 hours in the 

presence or absence of supra-physiologic VEGF. Cells reached confluence after 24 hours upon 

spreading and adhesion, and were cultured for an additional 24 hours to enable stable inter-

endothelial adherens junction (IEJ) formation. Monolayer stabilisation was confirmed through a 

uniform cobblestone morphology under low magnification and proliferation, junctions and NOTCH 

activation were considered when analysing the culture. As seen in Figure 16, the culture was stained 

for activated NOTCH (NICD), VE cadherin (VEC), nuclei and actin cytoskeleton which 

demonstrated a smaller and more disorganised cytoskeleton in HUVEC when compared to HAoEC 

(Primary Human Aortic Endothelial Cells) and HDMEC (Primary Human Dermal Microvascular 

Endothelial Cells).  

 

 

Figure 16. Microphotographs of HUVEC. HUVEC untreated immunostained for VE-cadherin 

(green), NICD (orange), F-actin (red) and DAPI (blue); (scale bar: 25μm).  

As morphological features are organ specific in EC, interactions between EC and other 

cell types can differ by their source (Uwamori, 2019). HUVEC were selected based on their ability 

                  VE-Cadherin                   NICD                   DAPI                        F-Actin 
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to form more extensive microvascular networks and low permeability coefficient in 

microvasculature and high NOTCH signalling, similar to brain endothelial cells. In order to 

implement experimental data into the simulation, the HUVEC images are translated into PIFF 

format utilising ImageJ and R script. In the process of building a functional simulation with the 

desired outcome, 3 models were created implementing various approaches, based on existing CC3D 

demos simulating delta-notch signalling, delta-notch signalling in response to VEGF and 

angiogenesis, cell tracking and working simulations provided by Dr Veschini. 
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3.2 Model 1: Delta-NOTCH Signalling in Experimental Data 

 

Model 1 tackles first steps in simulating Delta-NOTCH signalling in experimental 

experimental data using CC3D. A simulation was created, implementing experimental data defined 

as cell types ‘Medium' and ‘EC’. Code errors were solved correcting lattice dimensions matching 

boundary conditions of the experimental data image frame, relocating the experimental data image 

in the model simulation folder and rephrasing the image initialiser code. Cells imploded upon initial 

simulation. Cell volume, binding parameter, target and lambda volume and surface and lastly 

temperature were adjusted to successfully stabilise the cell count and attain cell contact needed for 

Delta-NOTCH signalling. Results show that changes in the AdhesionFlex plugin within the XML 

code, the VEC Binding Parameter (adhesion molecule VE-Cadherin (VEC)) and TargetVolume and 

TargetSurface significantly impacted cell contact and movement. Results shown in Figure 17 show 

changes in temperature, surface and target constraint demonstrated little to no impact in cell 

behaviour, contact and inventory. Low target and lambda volume led to small appearance and loss 

of contact in cells, high volumes led to enhanced cell contact and cell expansion toward the edges of 

the lattice.  
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Figure 17. Model 1 in Cell_Field View. 1) DeltaNotch Template. 2) Including Experimental Data: 

Cells disappear. 3) VEC Binding Parameter (VECBP) = 3. Cells Implode slower. 4)VECBP = 15. 

Cells Multiply. 5) VECBP 0.5 -> 8.5. Cells Implode Slower. 6) VECBP 0.5 -> 9. Cell Count Near 

Consistent. 7) VECBP = 9.5, Consistent Cell Count. 8) VECBP = 9. Cell Inventory Decreases. 9) 

VECBP= 9.25. Cell Count Consistent. 10) Target Volume (TV) = 10, No Contact, Cells Shrink. 11) 

TV, Lambda Volume (LV); Target, Surface constraint (TS, LS) = 300. Cells appear larger, do not 

move. 12)TV, TS = 1000, LV, LS = 200. Cells Expand. 13) TV = 1000, LV = 10, TS = 150, LS = 

10. Cells Expand toward edges. 14) Changes in Temperature: Temperature = 1. 

 

In order to simulate Delta-NOTCH signalling within the above lattice of experimental 

data, DeltaNotch.cc3d was taken from the CC3D_3.7.5 simulation folder and amended to fit the 

experimental data model’s cell type and boundary conditions. Cell visualisation fields were created 

for Delta, NOTCH and NICD, implementing mathematical modelling replicated from 

DeltaNotch.cc3d. Initial code output errors including missing attributes and local variables were 
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solved by amending values in the Steppable class code according to the experimental data, and 

implementing the SMBL solver. Finally, Delta-NOTCH signalling was simulated and visualised as 

illustrated in Figure 18.  

 

 

Figure 18. Delta-NOTCH Patterning Simulation Visualised in Model 1.  

 

A graph detailing NICD values was created to allow for a more detailed analysis of 

NICD values in conjunction with DELTA and NOTCH values over time. The graph was 

constructed from the EC_Connect_V7 simulation model provided by Dr Veschini. A separate 

visualisation field was created, indicating NICD values per field over time defined by MCS, 

illustrated in Figure 19. 

 

 

Figure 19. Implementing And Visualising The NICD Graph By Time In MCS.  
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3.2 Model 2: Visualising Signalling Pathways   

 

Model 2 expands the study of further angiogenic factors by implementing fields for 

VEGF, JAGGED1, both implicated in inducing angiogenesis, through additional visualisation fields 

and the GeneExprMach Steppable. The GeneExprMach Steppable focuses on mRNA transcription, 

protein translation and NICD dependent regulation of gene expression under appropriate conditions. 

The field creation was successful but no data was displayed (Appendix 1). DeltaNotch.cc3d was 

replaced with SBMLSolverAntimony3.cc3d, simulating Delta-NOTCH signalling and VEGF 

diffusion. Cell types, boundary conditions and values were amended to suit the experimental data 

boundaries and definitions, illustrated in Figure 20. Here, the vascular wall is simulated through an 

endothelial cell layer on the left, and VEGF secretion is simulated as a diffusion Steppable on the 

right.  
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Figure 20. Implementing Experimental Data In Antimony 3 Simulation. 1) Antimony model 

before implementation experimental data. 2, 3) Implementation of experimental data and 

modification of lattice dimensions and cell property definitions at time = 6s and 9s. 
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3.4 Model 2: Visualising Tip Cell Formation And Cell Migration 

 

Assuming that the VEGF-Delta-NOTCH signalling pathway induces tip cell formation 

whereby tip cells migrate towards the VEGF secreting agent, a vascularised brain tumour, we can 

track endothelial cell differentiation and tip cell migration to determine angiogenic potential in 

given experimental data of endothelial cells. TrackCellCOM.cc3d imported and amended according 

to the model's existing cell types and boundary conditions to track cell behaviour and migration by 

centre of mass, shown in Figure 21.  

 

 

Figure 21. Simulating and tracing Endothelial Cell Migration and Tip Cell Formation. 
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3.5 Model 2: Simulating VEGF Secretion And The Vascular Wall 

 

A vascular wall environment of endothelial cells was created along the lower x-axis, 

and the VEGF gradient was displaced to the upper x-axis. Cells were enlarged to enhance contact 

energy and adhesion, a cell wall was created to constrain cells within the simulation (Figure 22). 

Further, cell inventory was reduced due to cell size, Delta-NOTCH signalling and 

minimal cell migration was observed. However, enhanced cell adhesion and contact resulted in a 

loss of cell movement and tip cell formation and migration could not be observed (Appendix 2). 

Cell movement could slightly be restored when removing the wall constraint, causing diffusion and 

mirroring of cells at the lattice wall, and a loss of the vascular wall environment (Appendix 3). 
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Figure 22: Simulating Delta-Notch Signalling In various cell volumes. 1) Creating and freezing 

a wall. 2) Enhancing contact energy. 3) Enhancing DiffusionCoefficient in DiffusionSolverFE. 4) 

Reducing Contact energy between all cells and medium.  
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3.6 Model 3: Simulating And Tracking Angiogenic Potential 

 

Model 3 combines progress and understanding of the software and cell behaviour in 

simulations from previous models. A new simulation was created, only implementing experimental 

data and cell tracking (Figure 23, Appendix 4). 

 

 

Figure 23. Model 3. 1) Cell track simulation at MCS = 200. 2) Implementation if experimental data   

at MCS = 212. 3) Implementation if experimental data at MCS = 10012. 

 

Cell size was expanded by amending volume, target and surface constraints, and 

Antimony3 from CC3D_3.7.5 demos was implemented and amended according to simulation cell 
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and boundary values. The amount of cells in the lattice left no extracellular space to observe 

migration, however, Delta-NOTCH signalling in response to the VEGF gradient form the right end 

of the x-axis, seen in Figure 24. This can be taken further by amending cell size and cell inventory 

in future experiments to observe cell migration across the extracellular matrix.   

 

 

Figure 24. Implementation of experimental data and antimony at MCS = 200.  

 

Finally, a summary of intent and selection of implemented demo file components within 

XML and Python Steppables utilised in model 3 can be found in Figure 25.  
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Figure 25. Summary Of Intent And Final Selection Of Model Components. (Created Using 

XMind.) 
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4. Discussion 

4.1 Relevance of Results In Translational Potential 

 

In a clinical context, deficient angiogenesis can be induced through angiogenic 

inhibitors or anti-angiogenic factors (Yoo et al., 2013). The quantification of angiogenesis in a 

biopsy specimen can be used to predict metastasis and recurrence risks. Therefore using biopsy data 

within this simulation model could simulate metastasis and recurrence; and gain a deeper 

understanding of underlying mechanisms. Furthermore, high microvessel density can be indicative 

of metastatic risk as they can facilitate the migration of cancer cells into the circulation. 

Implementing vessel density as a parameter within this model can help further understand tumour 

recurrence and cancer spread.   

Additional translational application can be found in retinal vascular diseases often 

causing severe vision loss in developed countries through ocular neurovascularisation or leakage of 

retinal vessels (Campochiaro, 2013). Ocular vascularisation can also be found in proliferative 

diabetic retinopathy, neovascular glaucoma or age-related macular degeneration and is often treated 

through VEGF inhibition (Yoo et al., 2013). Retinal hypoxia and elevated levels of HIF-1 

stimulating VEGF secretion, placental growth factor, platelet-derived growth factor-B (PDGF-B), 

stromal-derived growth factor-1 and their receptors and further hypoxia-regulated gene products 

including angiopoietin-2 are key features of the disease. The disease specific hypoxia induced 

VEGF secretion is similar to the components used whilst modelling angiogenic potential in a 

vascularised tumour environment, which could be modified and used to simulate angiogenic 

potential in a disease environment to further study the underlying disease mechanisms and VEGF-

induced treatment efficacy.  
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4.1 Future Applications In Cancer Medicines Research 

 

As we know, tumours secrete transmitters to stimulate angiogenesis. Hereby the study 

of anti-angiogenic agents is key to preventing and slowing down cancer metastasis and growth (Yoo 

et al., 2013). GBMs manifest as a focal lesion with central necrosis (Giese & Westphal, 1996). They 

are surrounded by an angiogenic tumour rim and invade their surrounding extracellular matrix 

through white matter tracts and blood vessels. Migrating glioma cells within the brain parenchyma 

often complicate surgery and radiotherapy, however, the mechanisms behind their migration remain 

unknown (Hoelzinger et al., 2007). Today, a cure is still extremely rare and GBM are often treated 

surgically, followed by radiotherapy and chemotherapy; and new agents including angiogenesis 

inhibitors such as Bevacizumab (also known as Avastin) which binds to VEGF and inhibits VEGFR 

activation for angiogenesis (Verhoeff et al., 2009). Bevacizumab is often administered alongside 

chemotherapeutic agents as demonstrated in Figure 26 (Ferrara et al., 2005). 
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Figure 26. MRI Scans of bevacizumab treatment of recurrent GBM. Dosage: 10 mg/kg every 3 

weeks, 50 mg/m2 temozolomide daily. Description by columns: a) Day 0: cystic and tumour 

component pre-treatment, midline shift and vasogenic oedema (extracellular accumulation of fluid, 

occurring through blood-brain barrier disruption (Michinaga & Koyama, 2015). b) reduced midline 

shift. c) Day 21: no tumour progression, reduced midline shift and oedema. d) Day 88: decreased 

tumour and cystic size, normalised midline shift, light increase of oedema. e) Day 188: increased 

tumour size and cystic component, increased midline shift and oedema.  

Figure taken from Verhoeff et al., 2009. 

 

Based on a 3D model developed by Yanagisawa et al. (2021), the model developed 

within this study can further be applied in the simulation of treatment dosage and timing. The model 

encompasses angiogenesis and tumour growth through angiopoietin, regulateing endothelial cell 

and vascular wall adhesion and migration, needed for angiogenesis initiation. Anti-angiogenic 

therapeutics such as bevacizumab, sunitinib and aflibercept can be modelled in CC3D via their 
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effective pathways, such as VEGF’s inhibition due to bevacizumab. Theory on how certain 

therapeutics work can be tested using computational models and aid in treatment selection in the 

context of different grade vascular tumour environments and prognosis. If simulations use 

experimental data that could be connected to cell banks and linked to patient data, the model could 

be used to predict treatment efficacy. Medicines specific simulations can be added to existing 

models and experimental data in Steppable files, whereby pathways and response to defined 

extracellular factors can be amended and edited based on dosage, tumour grade and other 

parameters. As anti-angiogenic treatment in cancer is often given in conjunction with other 

medicines, multiple treatment agents can be implemented as steppable files and used to determine 

the most effective combinations, timings and dosages. 

 

Other angiogenesis inhibitors include sorafenib and sunitinib, which bind to various 

endothelial cell receptors and other downstream signalling proteins to block angiogenic activity. 

Other common targets for angiogenesis inhibition in clinical trials include epidermal growth factor 

receptor (EGFR), VEGFR, VEGFR2,3 Integrinα-V-β-3 and various other factors, expanded and 

summarised in Table 3. As multiple cell-to-cell interactions can be simulated in computational 

models, various of the above factors can be implemented and interchanged within the model created 

within this study and used to find new potential treatment strategies and can help eradicate early 

errors in clinical trials. 
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Table 3. Angiogenic potential in individual compounds. Taken from Yoo et al., 2013 

 Antiangiogenic compounds Mechanism of action 

Inhibitors of ECM 

remodeling 

• Batimastat, Marimastat, AG3340, 

Neovastat, PEX, TIMP-1,2,3,4 

• PAI-1,2, uPA Ab, uPAR Ab, Amiloride 

• Minocycline, tetracyclines, cartilage-

derived TIMP 

• MMP inhibitors, block endothelial and tumor 

cell invasion 

• uPA inhibitors, block ECM breakdown 

• Collagenase inhibitors, disrupt collagen 

synthesis and deposition 

Inhibitors of 

adhesion molecules 

• α v β 3 Ab: LM609 and Vitaxin, RGD 

containing peptides, α v β 5 Ab 

• Benzodiazepine derivatives 

• Block EC adhesion, induce EC apoptosis 

• Antagonist of α v β 3 

Inhibitors of 

activated ECs 

• Endogenous inhibitors: endostatin, 

angiostatin, aaAT 

• IFN-α, IFN-γ, IL-12, nitric oxide synthase 

inhibitors, TSP-1 

• TNP-470, Combretastatin A-4 

• Thalidomide 

• Linomide 

• Block EC proliferation, induce EC apoptosis, 

inhibit angiogenic switch 

• Block EC migration and/or proliferation 

• Block EC proliferation 

• Inhibits angiogenesis in vivo 

• Inhibits EC migration 

Inhibitors of 

angiogenic inducers 

or their receptors 

• IFN-α, PF-4, prolactin fragment 

• Suramin and analogues 

• PPS, distamycin A analogues, bFGF Ab, 

antisense-bFGF 

• Protamine 

• SU5416, soluble Flt-1, dominant-negative 

Flk-1, VEGF receptor, ribozymes, VEGF 

Ab 

• Aspirin, NS-398 

• 6AT, 6A5BU, 7-DX 

• Inhibit bFGF, Inhibit bFGF-induced EC 

proliferation 

• Bind to various growth factors including 

bFGF, VEGF, PDGF, inhibit EC migration 

and proliferation 

• Inhibit bFGF activity 

• Binds heparin, inhibits EC migration and 

proliferation 

• Block VEGF activity 

• COX inhibitors 

Inhibitors of EC 

intracellular 

signalling 

• Genistein 

• Lavendustin A 

• Ang-2 

• Tyrosine kinase inhibitor, blocks uPA, EC 

migration and proliferation 

• Selective inhibitor of protein tyrosine kinase 

 

 

The model created within this study can further be applied in the study of treatment 

outcomes and response prediction can be found in a better understanding of the influence of anti-

angiogenic treatment and environmental factors. As tumour growth through vascular supply is 

linked to VEGF over-expression, the VEGF pathway is often targeted in cancer treatment through 
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the use of bevacizumab, sunitinib and aflibercept (Vasudev & Reynolds, 2014). VEGF inhibition 

however is not effective in all cancers and is in need of further investigation of its use within 

different disease stages, duration, interaction with chemotherapy, proposed biomarkers and 

mechanisms of resistance such as enhanced cancer aggressiveness as illustrated in Figure 27.  

 

 

Figure 27: Angiogenic Therapy Response And VEGF targeted therapy resistance. 1) Strong 

vascular response, tumour shrinkage, strong vessel reduction. 2) Strong vascular response, tumour 

stabilisation. 3) Poor vascular response, minimal vessel reduction, tumour progression. 4, 5) 

Acquired resistance, alternative pathways are activated in response to lack of vascular supply 

leading to tumour progression and new vascular supply. Vessel Heterogeneity: Therapy insensitive 

vessels remain. Alternative Signalling Pathways: Up-regulation of alternative pro-angiogenic 

factors for vessel growth. Stromal Cells: Myeloid cells, fibroblasts infiltrate tumour and mediate 

therapy resistance through pro-angiogenic factors. Stress Adaptation: Tumour cells adapt to hypoxia 

and nutrient shortage. Adapted from Vasudev & Reynolds (2014). (Created Using BioRender.) 

Vessel Heterogeneity Alternative Signalling Stromal Cells Stress Adaptation 

Strong Vascular Response Poor Vascular Response Acquired Resistance 

1 2 3 4 5 
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Other challenges in anti-angiogenic cancer treatment include drug resistance and 

impaired delivery through general genomic instability and tumour mass, as well as challenges in 

reaching cancer cells as the abnormally high interstitial fluid pressure in the tumour mass 

interstitium acts as barrier. Further simulation models involving experimental data could be 

developed utilising a combination of existing tumour progression models, such as 

AVascularTumour.cc3D in CC3D_4.3.7, and models of angiogenic potential and treatment 

simulations. This can be expanded into considering the influence of migrating glioma cells in the 

brain parenchyma (Hoelzinger et al., 2007). Cell migration can be investigated through cell 

migration models in CC3D and could better our understanding of mechanisms behind their 

migration.  
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4.3 Limitations And Future Directions 

 

Cell based models are well suited to build computational experiments concerning the 

effects of a single cell on higher hierarchies and reactions such as stem cells or tumour, immune 

reactions (Mezcar et al., 2019). The benefit of working with a lattice based model is its speed and 

simplicity, however, the realism behind lattice based models is limited in their ability to incorporate 

off-lattice cell-to-cell biomechanics and interactions. As all values and cellular interactions in 

CC3D are declared, existing literature can simply be modelled to test and confirm a theory. Hereby 

both computational and mathematical models are framed within restricted conditions such as a fixed 

developmental stage, fixed temperature or number of cells which is not the reality in nature (Bray, 

2014). Furthermore, each mechanism has the ability to adapt to stress and morph its molecular 

makeup to survive. Therefore learning, in an evolutionary sense, meaning how to respond 

appropriately to changes in the environment, requires further advances in computational modelling, 

possibly through machine learning and AI. Computational models can tell us if hypothetical 

mechanism could work as proposed and reveal flaws in current thinking, which can be aid us in 

better understanding molecular mechanisms and use these to develop new treatment strategies. 

However, any features that aren’t explicitly stated in the simulation code won’t be included in the 

simulation and may lead to incorrect results when modelling complex processes.  

In the case of this simulation model, the accuracy of the biological processes occurring 

in angiogenesis and a vascularised tumour environment is enhanced through implementing 

experimental data and by modelling only processes which can be replicated within the Vascular 

Cell Dynamics Lab using induced pluripotent stem cells (iPSC) in vitro.  Finally, this simulation 

model can be added to the ECPT, a EC profiling tool built within the Vascular Cell Dynamics Lab. 

The tool is aiming to enable single cell profiling with monolayers and provide regional as well as 

spatial information where this model can simulate regional environments and observe changes in 

spatial correlations as well as cell-to-cell signalling.  
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4.4 Conclusion 

 

Concluding, this study demonstrates the potential of combining experimental data with 

computational simulations in understanding angiogenesis and angiogenic potential. Here, we can 

apply theory from literature, such as Delta-NOTCH signalling in response to VEGF and other 

extracellular factors, to experimental data and observe cell-to-cell interactions and behaviour on a 

single cell and larger scale basis. Experiments can be repeated in-vitro whereby results can be 

compared to the synthetic data created through computational modelling and experimental data and, 

if correlating, confirm and expand the theory behind cellular processes. The model of angiogenic 

potential in a vascularised tumour environment can be taken further in simulating anti-angiogenic 

treatment pathways, e.g. VEGF inhibition. Other parameters, such as time frame, dosage and 

tumour progression, can be simulated to investigate treatment strategies and aid in drug efficiency 

as well as planning clinical trials. Computational models of treatment responses based on 

experimental data can further be seen as a huge step towards personalised medicine if patient cells 

can be linked to experimental data via e.g. cell banks, and used to predict likely treatment response 

and outcomes. 

 

 

 

 

 

 

 

 

 

 



 

 Page 58 

Acknowledgements 

 

I would like to thank The Vascular Cell Dynamics Lab, for being so incredibly 

welcoming, motivating and providing a great work environment. I couldn’t have asked for a more 

amazing and inspiring lab group to be working with.  

I would like to thank my supervisor, Dr Veschini, for his mentorship and supervision; 

adopting me into the lab, providing me with an exciting project. I would also like to thank him for 

all the continued support and teaching me the basics of computational cell modelling and 

endothelial cell development, that led to the successful outcomes of this project.  

I would like to thank Francois Chesnais, PhD candidate (Veschini Lab) for all the 

continued support and cheering up during my thesis project, especially within the writing process. 

I would like to thank Marco Branco, my fellow MSc student in the lab, for all the moral 

support, brainstorming and his amazing work ethic every day.  

I would like to thank Dr Walsh, my personal tutor and course lead, for all his continued 

support in the process of finding this project, and encouraging words throughout.  

 

 

 

 

 

 

 

 

 

 



 

 Page 59 

Reference 

 

Alber, M., Kiskowski, M., Glazier, J., & Jiang, Y. (2003). On Cellular Automaton Approaches to Modeling Biological Cells. 

Mathematical Systems Theory in Biology, Communications, Computation, and Finance. 

Ahir, B. K., Engelhard, H. H., & Lakka, S. S. (2020). Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. 

Molecular neurobiology, 57(5), 2461–2478. https://doi.org/10.1007/s12035-020-01892-8  

Anderson, A. R., & Chaplain, M. A. (1998). Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin 

of mathematical biology, 60(5), 857–899. https://doi.org/10.1006/bulm.1998.0042 

Benedito, R., Rocha, S. F., Woeste, M., Zamykal, M., Radtke, F., Casanovas, O., Duarte, A., Pytowski, B., & Adams, R. H. (2012). 

Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature, 484(7392), 110–114. 

https://doi.org/10.1038/nature10908 

Brodland G. W. (2015). How computational models can help unlock biological systems. Seminars in cell & developmental biology, 

47-48, 62–73. https://doi.org/10.1016/j.semcdb.2015.07.001 

Burstedde, C., Klauck, K., Schadschneider, A., & Zittartz, J. (2001). Simulation of pedestrian dynamics using a two-dimensional 

cellular automaton. Physica A: Statistical Mechanics and Its Applications, 295(3–4), 507–525. https://doi.org/10.1016/S0378-4371(01)00141-8 

Carlier, A., Geris, L., Bentley, K., Carmeliet, G., Carmeliet, P., & Van Oosterwyck, H. (2012). MOSAIC: a multiscale model of 

osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS computational biology, 8(10), e1002724. 

https://doi.org/10.1371/journal.pcbi.1002724 

Campochiaro P. A. (2013). Ocular neovascularization. Journal of molecular medicine (Berlin, Germany), 91(3), 311–321. 

https://doi.org/10.1007/s00109-013-0993-5 

Checa, S., & Prendergast, P. J. (2009). A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-

based modeling approach. Annals of biomedical engineering, 37(1), 129–145. https://doi.org/10.1007/s10439-008-9594-9 

Chen, W., Xia, P., Wang, H., Tu, J., Liang, X., Zhang, X., & Li, L. (2019). The endothelial tip-stalk cell selection and shuffling 

during angiogenesis. Journal of cell communication and signaling, 13(3), 291–301. https://doi.org/10.1007/s12079-019-00511-z 

Chesnais, F., Le Caillec, J., Roy, E., Danovi, D., & Veschini, L. (2020). High content Image Analysis to study phenotypic 

heterogeneity in endothelial cell monolayers [Preprint]. Cell Biology. https://doi.org/10.1101/2020.11.17.362277 

Clarke, K. C. (2014). Cellular Automata and Agent-Based Models. In M. M. Fischer & P. Nijkamp (Eds.), Handbook of Regional 

Science (pp. 1217–1233). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_63 

Chinot, O. L., Wick, W., Mason, W., Henriksson, R., Saran, F., Nishikawa, R., Carpentier, A. F., Hoang-Xuan, K., Kavan, P., 

Cernea, D., Brandes, A. A., Hilton, M., Abrey, L., & Cloughesy, T. (2014). Bevacizumab plus radiotherapy-temozolomide for newly diagnosed 

glioblastoma. The New England journal of medicine, 370(8), 709–722. https://doi.org/10.1056/NEJMoa1308345  

Czirok A. (2013). Endothelial cell motility, coordination and pattern formation during vasculogenesis. Wiley interdisciplinary 

reviews. Systems biology and medicine, 5(5), 587–602. https://doi.org/10.1002/wsbm.1233  

Collier, J. R., Monk, N. A., Maini, P. K., & Lewis, J. H. (1996). Pattern formation by lateral inhibition with feedback: a 

mathematical model of delta-notch intercellular signalling. Journal of theoretical biology, 183(4), 429–446. https://doi.org/10.1006/jtbi.1996.0233  

https://doi.org/10.1007/s12035-020-01892-8
https://doi.org/10.1006/bulm.1998.0042
https://doi.org/10.1038/nature10908
https://doi.org/10.1016/j.semcdb.2015.07.001
https://doi.org/10.1016/S0378-4371(01)00141-8
https://doi.org/10.1371/journal.pcbi.1002724
https://doi.org/10.1007/s10439-008-9594-9
https://doi.org/10.1007/s12079-019-00511-z
https://doi.org/10.1101/2020.11.17.362277
https://doi.org/10.1007/978-3-642-23430-9_63
https://doi.org/10.1056/NEJMoa1308345
https://doi.org/10.1002/wsbm.1233
https://doi.org/10.1006/jtbi.1996.0233


 

 Page 60 

Czerniak, J. M., Zarzycki, H., Apiecionek, Ł., Palczewski, W., & Kardasz, P. (2018). A Cellular Automata-Based Simulation Tool 

for Real Fire Accident Prevention. Mathematical Problems in Engineering, 2018, 1–12. https://doi.org/10.1155/2018/3058241 

De Smet, F., Segura, I., De Bock, K., Hohensinner, P. J., & Carmeliet, P. (2009). Mechanisms of vessel branching: filopodia on 

endothelial tip cells lead the way. Arteriosclerosis, thrombosis, and vascular biology, 29(5), 639–649. 

https://doi.org/10.1161/ATVBAHA.109.185165 

Ferrara, N., Hillan, K. J., & Novotny, W. (2005). Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer 

therapy. Biochemical and biophysical research communications, 333(2), 328–335. https://doi.org/10.1016/j.bbrc.2005.05.132 

Ferreira, S. C., Jr, Martins, M. L., & Vilela, M. J. (2002). Reaction-diffusion model for the growth of avascular tumor. Physical 

review. E, Statistical, nonlinear, and soft matter physics, 65(2 Pt 1), 021907. https://doi.org/10.1103/PhysRevE.65.021907 

Fidler, I. J., & Ellis, L. M. (2004). Neoplastic angiogenesis--not all blood vessels are created equal. The New England journal of 

medicine, 351(3), 215–216. https://doi.org/10.1056/NEJMp048080 

Geudens, I., & Gerhardt, H. (2011). Coordinating cell behaviour during blood vessel formation. Development (Cambridge, 

England), 138(21), 4569–4583. https://doi.org/10.1242/dev.062323 

Giese, A., & Westphal, M. (1996). Glioma invasion in the central nervous system. Neurosurgery, 39(2), 235–252. 

https://doi.org/10.1097/00006123-199608000-00001 

Grant, M. R., Mostov, K. E., Tlsty, T. D., & Hunt, C. A. (2006). Simulating properties of in vitro epithelial cell morphogenesis. 

PLoS computational biology, 2(10), e129. https://doi.org/10.1371/journal.pcbi.0020129 

Guarnaccia, L., Navone, S. E., Trombetta, E., Cordiglieri, C., Cherubini, A., Crisà, F. M., Rampini, P., Miozzo, M., Fontana, L., 

Caroli, M., Locatelli, M., Riboni, L., Campanella, R., & Marfia, G. (2018). Angiogenesis in human brain tumors: screening of drug response through 

a patient-specific cell platform for personalized therapy. Scientific reports, 8(1), 8748. https://doi.org/10.1038/s41598-018-27116-7 

Henkel, R., Endler, L., Peters, A., Le Novère, N., & Waltemath, D. (2010). Ranked retrieval of Computational Biology models. 

BMC bioinformatics, 11, 423. https://doi.org/10.1186/1471-2105-11-423  

Hoelzinger, D. B., Demuth, T., & Berens, M. E. (2007). Autocrine factors that sustain glioma invasion and paracrine biology in the 

brain microenvironment. Journal of the National Cancer Institute, 99(21), 1583–1593. https://doi.org/10.1093/jnci/djm187 

Hucka, M., Bergmann, F. T., Dräger, A., Hoops, S., Keating, S. M., Le Novère, N., Myers, C. J., Olivier, B. G., Sahle, S., Schaff, J. 

C., Smith, L. P., Waltemath, D., & Wilkinson, D. J. (2018). The Systems Biology Markup Language (SBML): Language Specification for Level 3 

Version 2 Core. Journal of integrative bioinformatics, 15(1), 20170081. https://doi.org/10.1515/jib-2017-0081  

Hwang, M., Garbey, M., Berceli, S. A., & Tran-Son-Tay, R. (2009). Rule-Based Simulation of Multi-Cellular Biological Systems-A 

Review of Modeling Techniques. Cellular and molecular bioengineering, 2(3), 285–294. https://doi.org/10.1007/s12195-009-0078-2 

Guyon, J., Chapouly, C., Andrique, L., Bikfalvi, A., & Daubon, T. (2021). The Normal and Brain Tumor Vasculature: 

Morphological and Functional Characteristics and Therapeutic Targeting. Frontiers in Physiology, 12, 622615. 

https://doi.org/10.3389/fphys.2021.622615 

Karamysheva A. F. (2008). Mechanisms of angiogenesis. Biochemistry. Biokhimiia, 73(7), 751–762. 

https://doi.org/10.1134/s0006297908070031 

Kim, W. Y., & Lee, H. Y. (2009). Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic 

intervention in brain tumors. The FEBS journal, 276(17), 4653–4664. https://doi.org/10.1111/j.1742-4658.2009.07177.x 

https://doi.org/10.1155/2018/3058241
https://doi.org/10.1161/ATVBAHA.109.185165
https://doi.org/10.1016/j.bbrc.2005.05.132
https://doi.org/10.1056/NEJMp048080
https://doi.org/10.1242/dev.062323
https://doi.org/10.1097/00006123-199608000-00001
https://doi.org/10.1371/journal.pcbi.0020129
https://doi.org/10.1038/s41598-018-27116-7
https://doi.org/10.1186/1471-2105-11-423
https://doi.org/10.1093/jnci/djm187
https://doi.org/10.1007/s12195-009-0078-2
https://doi.org/10.3389/fphys.2021.622615
https://doi.org/10.1134/s0006297908070031
https://doi.org/10.1111/j.1742-4658.2009.07177.x


 

 Page 61 

Leon, S. P., Folkerth, R. D., & Black, P. M. (1996). Microvessel density is a prognostic indicator for patients with astroglial brain 

tumors. Cancer, 77(2), 362–372. https://doi.org/10.1002/(SICI)1097-0142(19960115)77:2<362::AID-CNCR20>3.0.CO;2-Z 

Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., & Freyer, J. P. (2005). A multiscale model for avascular tumor growth. Biophysical 

journal, 89(6), 3884–3894. https://doi.org/10.1529/biophysj.105.060640 

Kim, Y., Stolarska, M. A., & Othmer, H. G. (2011). The role of the microenvironment in tumor growth and invasion. Progress in 

biophysics and molecular biology, 106(2), 353–379. https://doi.org/10.1016/j.pbiomolbio.2011.06.006 

Koon, Y. L., Zhang, S., Rahmat, M. B., Koh, C. G., & Chiam, K. H. (2018). Enhanced Delta-Notch Lateral Inhibition Model 

Incorporating Intracellular Notch Heterogeneity and Tension-Dependent Rate of Delta-Notch Binding that Reproduces Sprouting Angiogenesis 

Patterns. Scientific reports, 8(1), 9519. https://doi.org/10.1038/s41598-018-27645-1 

Lakka, S. S., & Rao, J. S. (2008). Antiangiogenic therapy in brain tumors. Expert review of neurotherapeutics, 8(10), 1457–1473. 

https://doi.org/10.1586/14737175.8.10.1457  

Macklin, P., McDougall, S., Anderson, A. R., Chaplain, M. A., Cristini, V., & Lowengrub, J. (2009). Multiscale modelling and 

nonlinear simulation of vascular tumour growth. Journal of mathematical biology, 58(4-5), 765–798. https://doi.org/10.1007/s00285-008-0216-9 

Martinson, W. D., Ninomiya, H., Byrne, H. M., & Maini, P. K. (2021). Comparative analysis of continuum angiogenesis models. 

Journal of Mathematical Biology, 82(4), 21. https://doi.org/10.1007/s00285-021-01570-w 

Metzcar, J., Wang, Y., Heiland, R., & Macklin, P. (2019). A Review of Cell-Based Computational Modeling in Cancer Biology. 

JCO clinical cancer informatics, 3, 1–13. https://doi.org/10.1200/CCI.18.00069 

Michinaga, S., & Koyama, Y. (2015). Pathogenesis of brain edema and investigation into anti-edema drugs. International journal of 

molecular sciences, 16(5), 9949–9975. https://doi.org/10.3390/ijms16059949 

Milde, F., Bergdorf, M., & Koumoutsakos, P. (2008). A Hybrid Model for Three-Dimensional Simulations of Sprouting 

Angiogenesis. Biophysical Journal, 95(7), 3146–3160. https://doi.org/10.1529/biophysj.107.124511 

Moya, I. M., Umans, L., Maas, E., Pereira, P. N., Beets, K., Francis, A., Sents, W., Robertson, E. J., Mummery, C. L., Huylebroeck, 

D., & Zwijsen, A. (2012). Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Developmental cell, 22(3), 501–

514. https://doi.org/10.1016/j.devcel.2012.01.007 

Nakamura, K., Martin, K. C., Jackson, J. K., Beppu, K., Woo, C. W., & Thiele, C. J. (2006). Brain-derived neurotrophic factor 

activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer 

research, 66(8), 4249–4255. https://doi.org/10.1158/0008-5472.CAN-05-2789 

Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular health and risk management, 

2(3), 213–219. https://doi.org/10.2147/vhrm.2006.2.3.213 

Peng, L., Trucu, D., Lin, P., Thompson, A., & Chaplain, M. A. (2017). A Multiscale Mathematical Model of Tumour Invasive 

Growth. Bulletin of mathematical biology, 79(3), 389–429. https://doi.org/10.1007/s11538-016-0237-2 

Peirce S. M. (2008). Computational and mathematical modeling of angiogenesis. Microcirculation (New York, N.Y. : 1994), 15(8), 

739–751. https://doi.org/10.1080/10739680802220331 

Qutub, A. A., Mac Gabhann, F., Karagiannis, E. D., Vempati, P., & Popel, A. S. (2009). Multiscale models of angiogenesis. IEEE 

engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society, 28(2), 14–31. 

https://doi.org/10.1109/MEMB.2009.931791 

https://doi.org/10.1529/biophysj.105.060640
https://doi.org/10.1016/j.pbiomolbio.2011.06.006
https://doi.org/10.1038/s41598-018-27645-1
https://doi.org/10.1586/14737175.8.10.1457
https://doi.org/10.1007/s00285-008-0216-9
https://doi.org/10.1007/s00285-021-01570-w
https://doi.org/10.1200/CCI.18.00069
https://doi.org/10.3390/ijms16059949
https://doi.org/10.1529/biophysj.107.124511
https://doi.org/10.1016/j.devcel.2012.01.007
https://doi.org/10.1158/0008-5472.CAN-05-2789
https://doi.org/10.2147/vhrm.2006.2.3.213
https://doi.org/10.1007/s11538-016-0237-2
https://doi.org/10.1080/10739680802220331
https://doi.org/10.1109/MEMB.2009.931791


 

 Page 62 

Rundhaug J. E. (2005). Matrix metalloproteinases and angiogenesis. Journal of cellular and molecular medicine, 9(2), 267–285. 

https://doi.org/10.1111/j.1582-4934.2005.tb00355.x 

Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban 

processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122. https://doi.org/10.1016/j.landurbplan.2010.03.001 

Shirinifard, A., Gens, J. S., Zaitlen, B. L., Popławski, N. J., Swat, M., & Glazier, J. A. (2009). 3D multi-cell simulation of tumor 

growth and angiogenesis. PloS one, 4(10), e7190. https://doi.org/10.1371/journal.pone.0007190 

Starruß, J., de Back, W., Brusch, L., & Deutsch, A. (2014). Morpheus: a user-friendly modeling environment for multiscale and 

multicellular systems biology. Bioinformatics (Oxford, England), 30(9), 1331–1332. https://doi.org/10.1093/bioinformatics/btt772  

Tandle, A., Blazer, D. G., 3rd, & Libutti, S. K. (2004). Antiangiogenic gene therapy of cancer: recent developments. Journal of 

translational medicine, 2(1), 22. https://doi.org/10.1186/1479-5876-2-22 

Tang, L., van de Ven, A. L., Guo, D., Andasari, V., Cristini, V., Li, K. C., & Zhou, X. (2014). Computational modeling of 3D tumor 

growth and angiogenesis for chemotherapy evaluation. PloS one, 9(1), e83962. https://doi.org/10.1371/journal.pone.0083962 

Toomey, D. P., Murphy, J. F., & Conlon, K. C. (2009). COX-2, VEGF and tumour angiogenesis. The surgeon : journal of the Royal 

Colleges of Surgeons of Edinburgh and Ireland, 7(3), 174–180. https://doi.org/10.1016/s1479-666x(09)80042-5 

Uwamori, H., Ono, Y., Yamashita, T., Arai, K., & Sudo, R. (2019). Comparison of organ-specific endothelial cells in terms of 

microvascular formation and endothelial barrier functions. Microvascular research, 122, 60–70. https://doi.org/10.1016/j.mvr.2018.11.007  

Vasudev, N. S., & Reynolds, A. R. (2014). Anti-angiogenic therapy for cancer: current progress, unresolved questions and future 

directions. Angiogenesis, 17(3), 471–494. https://doi.org/10.1007/s10456-014-9420-y 

Verhoeff, J. J., van Tellingen, O., Claes, A., Stalpers, L. J., van Linde, M. E., Richel, D. J., Leenders, W. P., & van Furth, W. R. 

(2009). Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer, 9(1), 444. https://doi.org/10.1186/1471-

2407-9-444 

Weavers, H., & Skaer, H. (2014). Tip cells: master regulators of tubulogenesis?. Seminars in cell & developmental biology, 31(100), 

91–99. https://doi.org/10.1016/j.semcdb.2014.04.009 

Yadav, L., Puri, N., Rastogi, V., Satpute, P., & Sharma, V. (2015). Tumour Angiogenesis and Angiogenic Inhibitors: A Review. 

Journal of clinical and diagnostic research : JCDR, 9(6), XE01–XE05.  

Yanagisawa, H., Sugimoto, M., & Miyashita, T. (2021). Mathematical simulation of tumour angiogenesis: angiopoietin balance is a 

key factor in vessel growth and regression. Scientific reports, 11(1), 419. https://doi.org/10.1038/s41598-020-79824-8 

Yoo, S. Y., & Kwon, S. M. (2013).  Angiogenesis and its therapeutic opportunities. Mediators of inflammation, 2013, 127170. 

https://doi.org/10.1155/2013/127170 

 

 

 

 

https://doi.org/10.1111/j.1582-4934.2005.tb00355.x
https://doi.org/10.1016/j.landurbplan.2010.03.001
https://doi.org/10.1371/journal.pone.0007190
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1186/1479-5876-2-22
https://doi.org/10.1371/journal.pone.0083962
https://doi.org/10.1016/s1479-666x(09)80042-5
https://doi.org/10.1016/j.mvr.2018.11.007
https://doi.org/10.1007/s10456-014-9420-y
https://doi.org/10.1186/1471-2407-9-444
https://doi.org/10.1186/1471-2407-9-444
https://doi.org/10.1016/j.semcdb.2014.04.009
https://doi.org/10.1038/s41598-020-79824-8
https://doi.org/10.1155/2013/127170


 

 Page 63 

Appendices 

Appendix 1. VEGF and JAGGED1 Field Simulation, Implementation of Antimony Model 

with experimental data. 

 

Appendix 2. Tracking Tip Cell Formation Through Delta-NOTCH Signalling In COM. 
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Appendix 3. Tracking Tip Cell Formation Through Delta-NOTCH Signalling In COM. 
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Appendix 4. Building Model 3 Without Volume Constraints.  
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