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1. Developing a CompuCell3D Simulation—Overview 
 
The first step in building a CompuCell3D simulation is to design the cells and their interactions. 
Properties that you can assign to cells include a target volume or surface area, a response to 
chemical gradients, secretion of chemicals, differential cell adhesion, etc.…. Since the Monte 
Carlo method used in the Glazier-Graner-Hogeweg (GGH) also known as Cellular Potts Model 
(CPM) is based on fluctuations, you must also specify the overall amplitude of fluctuations and 
the degree of deviation allowed from target values, e.g. how much the volume will fluctuate 
around the target volume. The parameter that controls the fluctuations in the cellular membrane 
is called in the CC3DML markup language 'Temperature'. The name might be somewhat 
misleading because what it really means is not a physical temperature but rather a measure of 
cell membrane fluctuations. The name 'Temperature' comes directly from physics roots of the 
GGH model.  
Besides specifying interactions of cells with other cells and external chemicals each 
CompuCell3D simulation must include specification of initial conditions. 
 
CompuCell3D includes some standard initializers that create initial configurations of cells, but 
you will probably want to create your own. You specify the initial cell configuration in a data file 
with a simple format. You can create this file using scripting language or some third party GUI 
tools that will generate such initial configuration file based on (experimental) images. For 
example you may check PIFtracer tool available from our repository: 
http://trac.compucell3d.net/svn/cc3d_svn/branch/lab/PIFTracer/PIFTracer.zip 
This application runs on OSX only but we are in the process of porting it to other operating 
systems. 
Once you have written your configuration file, running CompuCell3D is as simple as playing a 
movie. You open the player, select the simulation file you want to use (using the command Open 
from the File drop-down menu) and click the Play button. You can select visualization options 
and customize the output you wish to store for later analysis. In addition to visualizing (and 
saving) the cell fields, you can look at chemical fields, pressure fields, velocity fields, etc..... 
 
Finally, you can analyze your data with standard techniques for analyzing and visualizing spatial 
data, e.g. in MatLab or Mathematica. We are currently developing some basic analysis tools to 
add to the CompuCell player. 
 

2 XML Structure and Syntax 
 
XML (or .xml), which stands for "eXtensible Markup Language" is an extension (or superclass) 
of HTML (Hypertext Markup Language). If you are familiar with HTML then you should find 
using XML easy. If not, it may take some getting used to. We use XML to specify configuration 
files because it is easy for a computer to parse. In the .xml configuration file you will specify the 
general parameters of your simulation such as the types of cells, their properties, etc.….  
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A typical block of .xml you will use in CompuCell3D looks like this: 
 
<SectionName Attribute1="attribute" Attribute2="attribute"> 
 <Variable1 VarAttribute1="attribute" VarAttribute2="attribute"> 
  ValueOfVariable 
 </Variable1> 
 <Subsection> 
  <VarA>ValueA</VarA> 
 </Subsection> 
</SectionName> 

 
Example 1. 
 
If that looks like a lot of gobble-dee-gook, don't worry. We'll explain it. The first thing to notice 
is that in XML you specify where each statement or element begins and ends like this: 
 
 <begin> 
  ... 
 </begin> 
 

<begin> is referred to as a begin tag and </begin> is called an end tag. Every xml element 
must have a begin tag and an end tag. 
 
We can also use the following syntax: <begin .... /> . In this case, /> marks the end of the 
element. This is an example of shortcut notation often becomes handy. 
 
As a matter of style, defining characteristics, properties, or attributes of a section are specified 
using the syntax PropertyValue="attribute", while specific values for a variable is usually 
placed between a <begin> and an </begin> for that variable. By section we mean everything 
that is contained between beginning tag and ending tag. For example: 
 <Sentence> 
  <Text>This is nice example</Text> 
  <Font>TimesNewRoman</Font>  
 </Sentence> 

 
Above we can see a section called Sentence which consists of two elements Text and Font 
Another set of examples, each of which defines a variable and assigns it a style and value is: 
 
 <Age Style="numeric">38</Age> 

 
or 
 
 <Age Style="InWords">"Thirty-Eight"</Age> 

 
or 
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 <Age Style="Roman">"XXXVIII"</Age> 

 
It is a matter of style, because we could just use the syntax: 
 
 <Age> 
  <Style>"Roman"</Style> 
  <Number>XXXVIII</Number> 
 </Age> 

 
or: 
 
 <Age Style="Roman" Value="XXXVIII"/> 

 
In the last example, properties of an element are attributes. In the second to last they are 
specified as values of two sub-elements Style and Number. Most parts of a configuration file 
will use a mixture of properties and attributes. The reference section of this manual lays out 
explicitly the proper syntax for these definitions. 
 
XML is hierarchical and nested. Thus sections can contain sub-sections, and the properties 
defined within sub-sections apply only within those subsections. The section called Subsection 
in Example 1 is nested within the section SectionName. So VarA only takes the value ValueA 
within the subsection. 
 

2.1 Configuration File Contents 
 
Any configuration file will contain two main types of blocks, called plugins and steppables. A 
block is an .xml element with non-trivial content. Plugins and steppables have different 
functions. A plugin is a routine that either calculates a single term in the energy function (i.e. it 
determines cell – cell interactions) or monitors lattice for changes e.g. it updates cell volume or 
cell's list of neighbors 
 
A plugin is called either at every pixel copy attempt (energy function plugin) or every pixel copy 
event (lattice monitor). A steppable is a routine that adjusts simulation parameters after each 
Monte Carlo Step (MCS) (or in general after each predefined number of Monte Carlo steps).  
Typically each MCS consists of as many spin-flip attempts as the number of lattice sites.  
 
Note: It is a good practice to list all plugins first, then steppables.  
 
Note: The difference between a spin flip and a Monte Carlo Step (MCS) is crucial. A Monte 
Carlo Step includes many spin flip attempts. Typically the number of spin-flip attempts equals 
the number of lattice sites, though you can change this relationship in the configuration file. 
Confusion between MCS and spin-flip attempts is common among novice GGH users. 
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2.2 Python Based Simulations 
You will often find it more practical to replace CC3DML configuration file with its Python 
equivalent. Translating CC3DML into Python syntax is straight forward and mechanical. If we 
take a look at simple and somewhat incomplete CC3DMLconfiguration file: 
 
<CompuCell3D> 
 <Potts> 
  <Dimensions x="101" y="101" z="1"/> 
  <Anneal>0</Anneal> 
  <Steps>1000</Steps> 
  <Temperature>5</Temperature> 
  <LatticeType>Hexagonal</LatticeType> 
  <Boundary_y>Periodic</Boundary_y> 
  <Boundary_x>Periodic</Boundary_x> 
 </Potts> 
</CompuCell3D> 

 
We see the following hierarchy of nested XML elements: 
1) CompuCell3D element has one child Potts element 
2) Potts element has 7 child-elements: Dimensions, Steps, Anneal, LatticeType, 
Boundary_y, Boundary_x. 
 
Dimension element has 3 attributes: x, y, z. 
 
Figuring out hierarchy of XML elements involves one simple rule: element A is a child of element 
X if A is one nesting level higher than X: 
 
Example 1 
 
<X> 
   <A>aaa</A> 
</X> 

 
<A> is a child of <X>. 
 
Example 2 
 
<X> 
   <Y> 
    <A>aaa</A> 
   </Y> 
</X> 

 
<A> is NOT a child of <X>. It is a child of <Y>. 
  
Once we know the hierarchy of XML elements we can easily replace them with corresponding 
Python syntax: 
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def configureSimulation(sim): 
   import CompuCellSetup 
   from XMLUtils import ElementCC3D 
   cc3d=ElementCC3D("CompuCell3D") 
   potts=cc3d.ElementCC3D("Potts") 
   potts.ElementCC3D("Dimensions",{"x":101,"y":101,"z":1}) 
   potts.ElementCC3D("Steps",{},1000) 
   potts.ElementCC3D("Temperature",{},5) 
   potts.ElementCC3D("Anneal",{},0) 
   potts.ElementCC3D("LatticeType",{},"Hexagonal")) 
   potts.ElementCC3D("Boundary_y",{},"Periodic") 
   potts.ElementCC3D("Boundary_x",{},"Periodic") 

 
After importing Python modules which make XML to python syntax possible in CompuCell3D 
(first two lines after def configureSimulation(sim):) we begin with creating “outermost” 
root element of the CC3DML configuration file: 
 
cc3d=ElementCC3D("CompuCell3D") 
 

Once we have root element created - here it is called cc3d – we can proceed by adding child 
elements to it: 
 
potts=cc3d.ElementCC3D("Potts") 

 
Adding a child to element involves calling ElementCC3D function of the element (object) to 
which we are attaching a child. Here we called ElementCC3D function of cc3d element (object). 
In Python, calling function of the object involves “dotting” name of the object with the name of 
the function: 
 
cc3d.ElementCC3D("Potts") 
 
The return value of this call is potts element which in turn also has ElementCC3D function 
available to be used to attach child-elements. 
 
The syntax of the ElementCC3D function is as follows: 
 
ElementsCC3D(objectName,{dictionary_of_attributes},elementContent) 

 
It is perfectly fine to provide objectName only as we did with potts element. In this case the 
reminding arguments take default values. 
We now have to add child elements to Potts element: 
 
potts.ElementCC3D("Dimensions",{"x":101,"y":101,"z":1}) 

 
Here we have added Dimensions element and we listed its attributes x, y, z. We pass attributes 
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as Python dictionary where name of the attribute is key of the dictionary (string value) and 
values are either numbers or strings. Internally all XML parameters are converted to string but it 
is very convenient if you can use numerical values in the CC3D element configuration because it 
allows you to use numeric expressions as either values of attributes or as elementContent. 
We continue in similar fashion adding reminder child-elements of the Potts element: 
 
potts.ElementCC3D("Steps",{},1000) 
potts.ElementCC3D("Temperature",{},5) 
potts.ElementCC3D("Anneal",{},0) 
potts.ElementCC3D("LatticeType",{},"Hexagonal")) 
potts.ElementCC3D("Boundary_y",{},"Periodic") 
potts.ElementCC3D("Boundary_x",{},"Periodic") 

 
Notice, that depending on the context we are using either string or numeric values of the 
elementContent’s. For elements which have non-empty element content but do not contain 
attributes, we must list empty attribute dictionary – {} - in the list of ElementCC3D function 
arguments: 
 
potts.ElementCC3D("Steps",{},1000) 

 
An example of adding an element which has both attributes and elementContent might look as 
follows: 
 
potts.ElementCC3D("Steps",{"Unit":"s*3600"},1000) 

 
Remark: Although CompuCell3D allows physical unit definitions actual syntax is different 
from the one given above. 

3. Writing Your Own CC3DML-based Simulation Files 
In this section we will show you step-by-step how to build simple CC3DML simulation files. 
For the part of his section we will use pure XML (CC3DML) format and as we gain more 
confidence we will switch to Python-based CC3DML syntax. The full benefits of using Python 
will become obvious when we will be building more complex simulations. 

3.1 Your First CompuCell3D Simulation—Foam Growth 
 
We will keep things as simple as possible and instead of starting with an introduction, 
motivation, overview etc...., we will show you complete configuration file for a foam-coarsening 
simulation. We found that looking at an example is the best way to grasp how to write 
CompuCell3D simulation files. Writing these files is really not magic, so let’s start: 
 
Our first simulation will model the growth of soap bubbles in foam. Bubbles are compact 
domains of gas separated by thin films of liquid stabilized by surfactants. The boundaries are 
subject to surface tension, and rearrange to try to minimize their total boundary length, causing 
them to assume the shapes of circular arcs. Triples of boundaries meet at vertices and the 
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minimization causes the vertex angles to be 120. In our GGH simulation, domains with the 
same index will represent the gas and the boundaries between domains (links with mismatched 
indices) will represent the soap films. In this case we have only one type of cell (the bubbles), 
though we will reserve a Medium cell type for the background. The curvature of the bubble walls 
causes pressure differences between bubbles and this in turn results in diffusion of gas from high 
pressure bubbles to low pressure bubbles. Somewhat counter-intuitively, walls move towards 
their concave side. Eventually, some bubbles will disappear and the average length-scale of the 
pattern will grow. 
 
Here is a typical configuration file: 
 
<CompuCell3D> 
 <Potts> 
  <Dimensions x="101" y="101" z="1"/> 
  <Anneal>0</Anneal> 
  <Steps>1000</Steps> 
  <Temperature>5</Temperature> 
  <Flip2DimRatio>1.0</Flip2DimRatio> 
  <Boundary_y>Periodic</Boundary_y> 
  <Boundary_x>Periodic</Boundary_x> 
  <FlipNeighborMaxDistance>1.75</FlipNeighborMaxDistance> 
 </Potts> 
  
 <Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/>  
  <CellType TypeName="Foam" TypeId="1"/>  
 </Plugin> 
  
 <Plugin Name="Contact"> 
  <Energy Type1="Foam" Type2="Foam">50</Energy> 
  <NeighborOrder>3</ NeighborOrder> 
 </Plugin> 
  
 <Steppable Type="PIFInitializer"> 
  <PIFName>foaminit2D.pif</PIFName> 
 </Steppable> 
  
</CompuCell3D> 

 
It wasn't that bad. In fact, I am sure, that without any explanation you could figure out what 
every symbol means in this file. Nevertheless let’s go though it step by step to make sure we 
understand syntax of every section. 
 

3.1.1 GGH Definitions 
 
The first section of the .xml file defines the global parameters of the lattice and the simulation. 
  
 <Potts> 
 <Dimensions x="101" y="101" z="1"/> 
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 <Anneal>0</Anneal> 
 <Steps>1000</Steps> 
 <Temperature>5</Temperature> 
 <Flip2DimRatio>1</Flip2DimRatio> 
 <Boundary_y>Periodic</Boundary_y> 
 <Boundary_x>Periodic</Boundary_x> 
 <NeighborOrder>3</ NeighborOrder> 
 </Potts> 

 
This section appears at the beginning of the configuration file. Line <Dimensions x="101" 
y="101" z="1"/> declares the dimensions of the lattice to be 101 x 101 x 1, i.e., the lattice is 
two-dimensional and extends in the xy plane.  The basis of the lattice is 0 in each direction, so 
the 101 lattice sites in the x and y directions have indices ranging from 0 to 100. 
<Steps>1000</Steps> tells CompuCell3D how long the simulation lasts in MCS. After 
executing this number of steps, CompuCell3D can run simulation at zero temperature for an 
additional period. In our case it will run for <Anneal>10</Anneal> extra steps.  Setting the 
temperature is as easy as writing <Temperature>5</Temperature>. Now, as you remember 
from the discussion about the difference between spin-flip attempts and MCS we can specify 
how many spin flips should be attempted in every MCS. We specify this number indirectly by 
specifying the Flip2DimRatio - <Flip2DimRatio>1</Flip2DimRatio>, which tells 
CompuCell3D that it should make 1 x number of lattice sites attempts per MCS – in our case one 
MCS is 101x101x1 spin-flip attempts. To set 2.5x101x101x1 spin flip attempts per MCS you 
would write <Flip2DimRatio>2.5</Flip2DimRatio>.  
 
The next line specifies the neighbor range of interactions (nearest neighbor, next-nearest 
neighbor, etc…..), NeighborOrder, <NeighborOrder>3</ NeighborOrder> 
This line tells CompuCell3D to search for a trial spin among  pixels which are at most 3rd nearest 
neighbors of the pixel which is suppesed to be overwriten. The simplest simulation would set 
NeighborOrder to be 1 (nearest neighbor interaction), but as discussed in class nearest neighbor 
interactions may cause artifacts due to lattice anisotropy. The longer the interaction range, the 
more isotropic the simulation and the slower it runs. In addition, if the interaction range is 
comparable to the cell size, you may generate unexpected effects, since non-adjacent cells will 
contact each other. 
 
The Potts section also contains tags called <Boundary_y> and <Boundary_x>. These tags impose 
boundary conditions on the lattice. In this case the x and y axes are periodic 
(<Boundary_x>Periodic</Boundary_x>) so that e.g. the pixel with x=0, y=1, z=1 will neighbor 
the pixel with x=100, y=1, z=1. If you do not specify boundary conditions CompuCell3D will 
assume them to be of type no-flux, i.e. lattice will not be extended. The conditions are 
independent in each direction, so you can specify any combination of boundary conditions you 
like. 
 
Once we have used the Potts section to create our lattice we can start listing plugins.  
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3.1.2 Cell Type Plugin 
 
Let's start with the CellType plugin whose main purpose is to inform CompuCell3D what cell 
types you will be using in the simulation. Actually, this particular plugin is an example of a 
plugin that is neither energy function nor lattice monitor. However it plays special role as you 
will see in a second. 
 
Note: In CompuCell3D, every cell has a unique index or Id which differentiates it from other 
cells and a non-unique cell type which identifies its class of behavior. Many distinct cells may 
have the same type and will appear painted with the same color when you visualize them.  
 
 <Plugin Name="CellType"> 
    <CellType TypeName="Medium" TypeId="0"/>  
    <CellType TypeName="Foam" TypeId="1"/>  
 </Plugin> 

 
The syntax here is quite straightforward. Each line contains the name of a type that the 
simulation uses and assigns it to an integer valued TypeId. We strongly recommend that 
TypeIds are consecutive positive integers (e.g. 0,1,2,3...). Medium is traditionally assigned a 
TypeId=0 and we strongly recommend adhering to it. In Example 1, we have created two cell 
types, Medium and Foam, with Medium assigned a TypeId of 0 and Foam a TypeId of 1. 
 

3.1.3 Contact Energy Plugin 
 
Energy calculations for the foam simulation are based on the boundary or contact energy 
between cells (or surface tension, if you prefer). The total energy of the foam is simply the total 
boundary length times the surface tension (here defined to be 2J). 
 
The explicit formula for the energy is: 

 
neighborsji

jijiadhesion JE
,,

)(),()()( )1)(,(    

 
, 
 
where i and j label two neighboring lattice sites ,  s denote cell Ids,   s denote cell types . 
Once again you need to differentiate between cell types and cell Ids. This formula shows that cell 
types and cell Ids are not the same. The Contact plugin in the .xml file, defines the energy per 
unit area of contact between cells of different types ( ),( )()( jiJ   ) and the interaction range 
(NeighborOrder) of the contact: 
 
 <Plugin Name="Contact"> 
   <Energy Type1="Foam" Type2="Foam">3</Energy> 
   <Energy Type1="Medium" Type2="Medium">0</Energy> 
   <Energy Type1="Medium" Type2="Foam">0</Energy> 
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   < NeighborOrder>3</NeighborOrder> 
 </Plugin> 

 
In this case, the interaction calculations will include all pixels up to third-nearest neighbor of 
each pixel in the cell. Foam cells have a contact energy per unit area of 3 and foam and medium 
and medium and medium have a contact energy of 0 per unit area. Notice that pixels "deep 
iniside" each cell will not contribute to contact energy due to a  function in the above formula. 
The only pixels contributing the the contact energy are those for which at least one of their 
neighbors (up to 3rd nearest order) belongs to a different cell. It is also worth mentioning that it is 
not necessary to calculate contact energy for entire lattice to run GGH model. All we need is a 
change of energy due do proposed pixel copy. In such situation the calculation can be (and is in 
fact) done locally which greatly speeds up the simulation. 
 

3.1.4 PIF Initializer 
To initialize the configuration of the simulation lattice you can use one of the built-in lattice 
initializers (we will show one in the next example), or you can write your own lattice 
initialization file. Our experience suggests that you will probably have to write your own 
initialization files rather than rely on built-in initializers. The reason is simple: the built-in 
initializers implement very simple cell layouts, and if you want to study more complicated cell 
arrangements, the built-in initializers will not be very helpful. Therefore we encourage you to 
learn how to prepare lattice initialization files. Again, file definition is not complicated and we 
will explain every step. The lattice initialization file tells CompuCell3D how to lay out assign the 
simulation lattice pixels to cells.  
 
The Potts Initial File (PIF) is a simple file format that we created for easy specification of initial 
cell positions. The PIF consists of multiple lines of the following format: 
 
cell# celltype x1 x2 y1 y2 z1 z2  

 
Where cell# is the unique integer index of a cell, celltype is a string representing the cell's 
initial type, and x1 and x2 specify a range of x-coordinates contained in the cell (similarly y1 
and y2 specify a range of y-coordinates and z1 and z2 specify a range of z-coordinates). Thus 
each line assigns a rectangular volume to a cell. If a cell is not perfectly rectangular, multiple 
lines can be used to build up the cell out of rectangular sub-volumes (just by reusing the cell# 
and celltype). 
 
A PIF can be provided to CompuCell3D by including the steppable object PIFInitializer. 
 
Let's look at a PIF example for foams: 
 
1 Foam 13 25 0 5 0 0  
2 Foam 25 39 0 5 0 0  
3 Foam 39 46 0 5 0 0  
4 Foam 46 57 0 5 0 0  
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5 Foam 57 65 0 5 0 0  
6 Foam 65 76 0 5 0 0  
7 Foam 76 89 0 5 0 0  
7 Foam 90 91 6 9 0 0 
 
These lines define seven rectangular cells of type Foam numbered 1 through 7. Notice that these 
cells lie in the xy plane (z1=0 z2=0 implies that cells have thickness =1) so this example is a 
two-dimensional initialization. Also notice that cell number seven appears twice. This means it 
will be a cell made out of two blocks (and the blocks don’t have to bee connected – you may 
create fragmented cells if you prefer). Notice also that you may reuse cell# however many 
times you want to create very complicated cell geometries.  
 

 
 
Figure 1. Results of the above PIF configurations. Cell number 7 consist of two, rightmost 
disjoint pieces.  
 
You can write the PIF file manually, but using a script or program that will write PIF file for you 
in the language of your choice (Perl, Python, Matlab, Mathematica, C, C++, Java or any other 
programming language) will save a great deal of typing. We will provide some sample scripts 
that you will be able to modify later to create your own PIF files. 
 
We will use simple script which creates initialization file for foam simulation. The syntax to use 
the script is the following: 
 
./FoamInit.py -r<row_size> -i<number of rows> -o<PIF file name> -z<random 
ratio> -m<min_width>. 

The script divides lattice into rows of width <row_size> then in each row it creates rectangular 
cells of height defined by <row_size> and width chosen randomly from interval [<min_width>, 
<min_width>*<random ratio>]. The lattice dimension is simply  
<number of rows>*<row_size>. For example calling FoamInit.py using the following syntax: 
 
FoamInit.py –r 5 –i 20 -ofoaminit2D.pif –z 2 –m 5 

 
Results in the following initial configuration: 
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Figure 2: Initial foam configuration after calling 
FoamInit.py –r 5 –i 20 –o foaminit2D.pif –z 2 –m 5 command. There are 20 rows and 
each row is 5 pixels tall. Minimum width of the cell is set to  5 pixels (-m 5). Actual width of the 
cell is a random integer from the interval [5, 5*2] where 2 is random ratio (-z 2).  

3.1.5 Exercises 
Let's now do few exercises.  
 
Note: On linux/OSX systems generate a new subdirectory for each run for each exercise that you 
do and do run in that subdirectory so that you can identify which output files belong to which 
simulation parameters. Type mkdir <new_directory>, then  
cd <new_directory> , finally start the simulation in the new directory by typing 
<path_to_CompuCell3D_run_script>/compucell3D.sh 
 

Exercise 1 
 
Let's generate different initial  condition by modifying <min_width> and <random ratio>. For 
example let's run FoamInit.py: with the following arguments 
./FoamInit.py –r 5 –i 60 –o foaminit2D_1.pif –z 2 –m 10. 
 
The last command will create a lattice initialization file called “foaminit2D_1.xml”. The lattice 
will be 301x301 (5*60+1) and will consist of 60 rows each of which is 5 pixel tall. Each row is 
divided into rectangular cells of randomly chosen width. The width is chosen from the interval 
[10,20] pixels. 
 
Now in the .xml configuration file for foam simulation you need to change the line  
 
<PIFName>foaminit2D.pif</PIFName>  

 
to 
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<PIFName>foaminit2D_1.pif</PIFName> 

 
This ensures that CompuCell3D will use foaminit2D_1.pif initialization file that you have just 
created. 
Observe what happens to the simulation. You may want to play with other values as well. 
 

   
 
Figure 3. Snapshots of foam coarsening simulation taken at T=30 MCS, T=300MCS and T=990 
MCS. Cells fill entire lattice and as the number of cells decreases, those remaining get bigger. 

Exercise 2 
 
Change interaction range in the contact energy. In line 
 
 <NeighborOrder>3</ NeighborOrder > 

 
change 3 to 1, 2, 4 and see what happens.  
 
Note: You may easily calculate a distance of a neighbor of a given order from a pixel, by 
calculating Euclidian distances between pixels on a square lattice and ordering them. If you do 
this exercise on 2D square lattice you will see that 1st nearest order neighbors are distance 1 

apart, 2nd - 2 , 3rd -2,4th - 5 etc. 
 
Note that the Number of Neighbors (NN) in two Dimensions goes as follows: For Nearest 
Neighbors (NeighborOrder=1), NN=4, For Next Nearest neighbors (NeighborOrder=2), NN=8, 
For Third neighbors (NeighborOrder=3), NN=12, For fourth neighbors (neighborOrder=4) 
NN=20 and for fifth neighbors (NeighborOrder=5) NN=24. See pictures below. Numbers on the 
grid denote order of neighbor (1st ,2nd, etc…). 
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Figure 4. Ranking of pixel neighbors on square 2D lattice. 
 
You should see that for longer interaction ranges and the same temperature and interaction 
energy, the evolution is slower and the boundary walls are smoother. This is because longer 
interaction ranges have smaller lattice anisotropy. That is, the variation in the energy of a wall 
as a function of the angle with respect to the underlying lattice is less for longer interaction 
ranges. E.g. for nearest neighbors, the energy of a wall at angle 0 or 90 degrees with respect to 
the lattice is 1 and for a wall at 45 or 135 degrees, the energy per unit length is 2 . 
 
Observe what happens to the simulation when you change interaction range. 
 

Exercise 3 
Run simulation with different temperatures: 0, 0.5J ,J, 3J, 10J where J is contact energy 
coefficient between foam cells. (<Energy Type1="Foam" Type2="Foam">3</Energy> in xml 
configuration file). 
In this exercise you will change the Temperature. In the Potts Section of the code 
This line looks like <Temperature>5</Temperature>. So you will use, e.g. 
 
<Temperature>0</Temperature> 

 
or 
 
<Temperature>10</Temperature> 

Etc… 
Letter J refers to the line which specifies J (contact energy coefficient) because what matters is 
the ratio J*Number of neighbors/T. So for larger J, T needs to be bigger to have the same effect 
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and for a longer neighbor interaction range, T must be bigger to have the same effect, because 
you have more neighbors. Note that the Number of Neighbors (NN) in two Dimensions goes as 
follows: For Nearest Neighbors, NN=4, For Next Nearest neighbors, NN=8, For Third neighbors, 
NN=12, for fourth neighbors NN=20 and for fifth neighbors NN=24.The point of this exercise is 
to study two things: the effect of lattice anisotropy and the transition from ‘ferromagnetic’ to 
disordered behavior. For T=0 for an interaction range of 1 (Depth), the pattern will freeze - it 
will not evolve at all, because all the boundaries will line up along low energy directions and T=0 
means that only steps that decrease the pattern energy are allowed.  
At T=0 for second Nearest Neighbor interaction range (NeighborOrder=2) the pattern will 
evolve normally. 
For higher T and the same interaction range and J, the boundaries will become rougher. You 
should find that as T increases, the coarsening rate increases up to some threshold value of J and 
then decreases again as T becomes very large. At very high T, the pattern should melt. This is a 
ferromagnetic to isotropic phase transition. The bubbles will fall apart and the spin values will be 
random. This occurs because the energy of a pixel is always very small compared to T, so every 
spin flip is accepted, even if it makes the boundaries longer. 
 

Exercise 4 
 
Now let's do quantitative exercise. In CC3DML file add a steppable which for every cell will 
output cell id, volume, surface and number of neighbors. Simply place the following lines in 
your CC3DML file: 
 
<Steppable Type="FoamDataOutput" Frequency="10"> 
   <Output CellID="" Volume="" Surface="" NumberOfNeighbors=""  
   FileName=”data”/> 
</Steppable> 
 

Did you paste it in the right place? 
The syntax is simple, as you can see, namely you specify frequency with which this steppable is 
called, and for the element Output you list properties of the cell that you want to output and give 
optional name of the output file (the default file name is Output). For the above example 
CompuCell3D will produce the following files: data.10, data.20, data.30 and so on. Each of 
these files will have the following contents: 
 
73      131     64      8 
74      46      32      6 
75      57      50      5 
76      16      18      5 
77      106     58      8 
79      6       10      3 
80      84      48      7 
13      70      46      5 
2       128     66      7 
Columns from left to right denote: cell id, volume, surface, number of neighbors. 
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Given that, data plot average bubble area as a function of time. For several chosen output files 
calculate average bubble area. Then plot this average area <A>as a function of time. 
 
Hints: for exercises requiring quantitative estimations and extraction of data from output files 
you may use Excel and use its sorting capabilities (Data->Sort...) . First open file in Excel 
(File->Open...) - this will take through several dialogs for importing text file into 
spreadsheets. Most of these dialogs are fairly well explained. Then once you have your 
spreadsheet ready you may select all the columns and go to the Data->Sort... to sort data with 
respect to a given column. Now, you should be able to do most of the exercises. You can also use 
other tools of your choice – Python, MatLab, Mathematica, Maple, Gnuplot etc… 

Exercise 5 
For a chosen time (output data file) find average area of n-sided bubble. Plot a histogram of 
<An>as a function of n. 

Exercise 6 
For few chosen output files plot histograms of p(n)- probability of finding n sided bubble in  at 
time t (i.e. in a given output file) and  p(A/<A>)- probability of finding bubble of area A/<A>at 
time t (i.e. in a given output file) 
 
Notice that p(n)is a ratio of number of n-sided bubbles and the number all the bubbles. 
Analogously for the p(A/<A>) . 

Exercise 7 
 
Generate different initial condition and check if p(A/<A>)as a function of t and A/<A>as a 
function of t depend on initial condition. 
 

Exercise 8 
 
Change the boundary conditions from periodic to no flux. Does the pattern look different? Why?  
 
Note: Do all of your other simulations with periodic boundary conditions. 
 

Exercise 9 
Evaluate <nA> - the average number of sides of a bubble of area A/<A>. You will have to use 
intervals of a convenient width in A/<A>  to get better statistics. 
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Exercise 10 
By comparing sequential files and looking for bubbles whose numbers of sides do not change 

between files, calculate
dt

dAn . Does )6(  n
dt

dA
  (i.e. does the foam obey von Neumann’s 

law)? Why or why not?  
 
Note that if you don’t check that the number of sides doesn’t change before you calculate your 
derivative, you will get the wrong answer. Why? 
 

Exercise 11 
Do foams reach a scaling state (a state where the average are grows but the statistical properties 
remain constant)? When? When do they not do so? 
 

Exercise 12 (Extra Credit) 
Repeat the above exercises in three dimensions, substituting number of faces for number of sides 
and volume for area. How does a three-dimensional foam differ from a two-dimensional foam? 
 

3.2 A Slightly More Complex Simulation—Cell Sorting 
 
Another relatively simple CompuCell3D simulation models biological cell sorting. In this 
simulation you start with a mixture of different cell types with different adhesivities to each 
other.  
 
Embryonic cells of two different types, when dissociated, randomly mixed, and reaggregated can 
spontaneously sort to reestablish coherent homogenous tissues. Both complete and partial cell 
sorting (in which large clusters of one cell type are trapped inside a continuous structure of 
another type) have been observed experimentally in vitro in embryonic cells. Sorting is a key 
step in regeneration of a normal animal from aggregates of dissociated cells of adult hydra and 
involves neither cell division nor differentiation but only spatial rearrangement  of cell positions. 
Physically cell sorting is caused by differences in adhesivities.  In this simulation you will be 
able to verify how different hierarchies of adhesion coefficients will lead to different types of 
sorting. 
 
In this set of exercises we will explore the role of the area (or volume constraint) and the effects 
of differential surface adhesivity. As you recall from lectures, these are described by the 
following equations: 

2
arg )( ettcellvolumevolume VVE   - volume constraint 

 
neighborsji

jijiadhesion JE
,,

)(),()()( )1)(,(   -contact energy 
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We may add surface constraint but it is not required for cell sorting to work and for the sake of 
simplicity will be omitted. 
You will be given a template xml file (cellsort_2D.xml) with simulation description. For most of 
the exercises your task will be to slightly modify this file, run the simulation and describe the 
results. To add another twist to the exercises we do not include step-by-step instruction what 
needs to be modified. We leave it to you as an exercise itself. However, if you feel you are stuck 
ask for help. 
 
Important: One thing to remember here is that this is a 2D simulation. In CompuCell3D volume 
means number of pixels occupied by a cell. Surface means number of pixel sides that have 
contact with other cells (we exclude lattice boundaries from surface calculations).  
It is important to realize that if your cells are only one pixel thick, then the surface of such cells 
(and here I mean true surface) is numerically equal to perimeter. This means that area of the 
cell on plane z=0 and z=1 does not count towards the surface. In this way we simulate 2D 
behavior in CompuCell3D.Therefore if you look at a "flat" 2D cell from the top and calculate its 
surface area you will conclude that it is equal to what CompuCell3D volume. In addition to this 
is you calculate the perimeter of such "flat" 2D cell you will get a quantity which CompuCell3D 
calls surface.  
 
In 3D there are no surprises and volume and surface of cells have their regular meaning in reality 
and in CompuCell3D 
 
Throughout the exercises we use the following convention: 
 
L – denotes”light” cells (NonCondensing in CompuCell3D terminology) 
D – denotes “dark” (Condensing in CompuCell3D terminology) 
M – denotes “medium”(Medium in CompuCell3D terminology) 
 
Example:JLD denotes adhesion coefficient between light (NonCondensing) and dark 
(Condensing) cells. 
 
N – denotes NonCondensing  cells  
C – denotes Condensing cells  
M – denotes Medium  
 
Example:JNC denotes adhesion coefficient between NonCondensing and Condensing cells. 
 
 
Before you begin, please copy cellsort_2D.xml to your private directory. Issue the following 
command: 
 
cp /Users/mswat/CompuCellFull5_install/cellsort_2D.xml <your private 
directory> 
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Remember also to create a separate directory for every simulation that you run and of course 
copy cellsort_2D.xml to this new directory. 
 
To create directory use the following command: 
 
mkdir <directory> . Example:  
 
mkdir Exercise_1_a 

 
After you copy cellsort_2D.xml to this directory you may rename it to more a meaningful name: 
 
mv cellsort_2D.xml cellsort_exercise_1_a.xml 

 
Above we renamed file called cellsort_2D.xml to cellsort_exercise_1_a.xml. 
In Unix renaming a file is done using mv command 
 
Hint: In all of the exercises below it can happen that cells may stick to the wall. The simplest 
way to avoid this type of is to set boundary conditions in x and y direction (since we are in 2-D). 
 
 

       
Figure 5. Cell sorting simulation. Snapshots were taken at T=30MCs, T=1500MCS and T=9990 
MCS. 
 
First let's look at the entire CC3DML description file for cell sorting before going into more 
detail: 
 
<CompuCell3D> 
 <Potts> 
   <Dimensions x="100" y="100" z="1"/> 
   <Anneal>10</Anneal> 
   <Steps>10000</Steps> 
   <Temperature>10</Temperature> 
   <Flip2DimRatio>1</Flip2DimRatio> 
   <NeighborOrder>2</ NeighborOrder > 
 </Potts> 
 
 <Plugin Name="Volume"> 
   <TargetVolume>25</TargetVolume> 
   <LambdaVolume>2.0</LambdaVolume> 
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 </Plugin> 
 
 <!--<Plugin Name="Surface"> 
   <TargetSurface>25</TargetSurface> 
   <LambdaSurface>2.0</LambdaSurface> 
 </Plugin> --> 
 
 <Plugin Name="CellType"> 
    <CellType TypeName="Medium" TypeId="0"/> 
    <CellType TypeName="Condensing" TypeId="1"/> 
    <CellType TypeName="NonCondensing" TypeId="2"/> 
 </Plugin> 
 
 <Plugin Name="Contact"> 
   <Energy Type1="Medium" Type2="Medium">0</Energy> 
   <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy> 
   <Energy Type1="Condensing"    Type2="Condensing">2</Energy> 
   <Energy Type1="NonCondensing" Type2="Condensing">11</Energy> 
   <Energy Type1="NonCondensing" Type2="Medium">16</Energy> 
   <Energy Type1="Condensing"    Type2="Medium">16</Energy> 
   <NeighborOrder>2</NeighborOrder> 
 </Plugin> 
 
 <Plugin Name="CenterOfMass"/> 
 
 <Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <CellSortInit>yes</CellSortInit>    
   <Radius>40</Radius> 
   <!--Engulfment BottomType="Condensing" TopType="NonCondensing"  
   EngulfmentCoordinate="y" EngulfmentCutoff="50"/--> 
 </Steppable> 
 
 

3.2.1 Volume and Surface Constraints 
 
<Plugin Name="Volume"> 
   <TargetVolume>25</TargetVolume> 
   <LambdaVolume>2.0</LambdaVolume> 
</Plugin> 
 
<Plugin Name="Surface"> 
   <TargetSurface>20</TargetSurface> 
   <LambdaSurface>1.5</LambdaSurface> 
</Plugin> 
 
These two plugins inform CompuCell3D that the Hamiltonian will have two additional terms 
associated with volume and surface conservation. That is when spin flip is attempted one cell 
will increase its volume and another cell will decrease (unless one of the cells is Medium). Notice 
that Medium is a cell type with unconstrained volume. Volume constraint essentially ensures that 
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cells maintain the volume which close (this depends on thermal fluctuations) to target volume. 
The role of surface plugin is analogous to the role played by volume plugin - to “preserve” 
surface. Note that surface plugin is commented out in the example above. 
 
Energy terms for volume and surface constraints have the form: 

2
arg )( ettcellvolumevolume VVE    

 
2

arg )( ettcellsurfacesurface SSE    
 
Note: performing single pixel copy may cause surface change in more that two cells – this is 
especially true in 3D. 
 

3.2.2 Calculating Surface and Volume Constraints 
 
Now that we have introduced volume and surface constraint we recommend that you go over few 
exercises that will teach you how to properly choose volume and surface constraint parameters 
so that cells do not freeze and do not disappear. One can of course use trial and error method but 
it is instructive to learn how these parameters cam be estimated rather than guessed.  If you are 
new to CompuCell3D you may skip this section at this time, however we strongly encourage you 
do come back to these exercises , as they show how to systematically pick  parameters of most 
important energy terms. 
This set of exercises was written by Dr. Nikodem Poplawski.  
 

Exercise v1. 
 
a) Consider a 2D cell which consists of 1 (one) pixel. The energy of such a system is 

2
1 )1(8  TVcm VJH  , where cmJ  is the adhesion coefficient between the cell and the 

medium. Here, 8 is the number of the second nearest neighbors in 2D (of course, you can reduce 
or extend the neighbors). 
First, set 0T . Your cell should disappear, if the energy of the system containing only the 

medium, 
2

0 TV VH  , is lower, 10 HH  . This occurs if 0VV   , where 12

8
0 


T

cm
V V

J
  

(check it, you can set 10cmJ  and 25TV , for which 63.10 V ). Otherwise, the cell should 

survive. For values of V  much higher than 0V , your cell will grow until its volume reaches 

TV . 
 
b) Try 0T . In this case, the processes increasing the energy of the system have a nonzero 
probability, but 0V  should still be the approximate threshold for stability of a 1-pixel cell. 
Check it, repeating point a). 
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Exercise v2. 
 
Now, consider a cell which is a square NN  . The energy of this cell is 

22 )()412( TVcmN VNJNH   . Assuming that the cells can take the form of squares only 
(otherwise the calculations would be too lengthy), we can ask the question what the equilibrium 

value 0N is. This value is given by 0



N

H N , and since )(412 2
TVcm

N VNNJ
N

H





 , we 

arrive at 00
3
0  NVN T , where 0

3


V

cmJ


 . The above equation is cubic in 0N , and has 

three real solutions (one stable corresponding to equilibrium) if max  , where 
2/3

max 3
2 






 TV

 . Otherwise, there is only one real root which is negative, thus there is no 

equilibrium value of N . Therefore, if 
'

0VV   , where  

2/3
'

0

3
2

3










T

cm
V

V

J


, our cell will shrink and disappear (note that 0
'

0 vv   so we are in the region 

where a single pixel is unstable).  
 

For 5N , 10cmJ , and 25TV , start from V  much larger than 
'

0v  (here equal to 

62.0 ) and set 5T . Your cell should approach the target volume TV . 

Decrease V . The cell volume should tend to a value smaller than TV . 

Try V  just a little larger than 
'

0v . The cell volume should approach the equilibrium value 

3
TV

. 

Try V  smaller than 
'

0v . Your cell should shrink and disappear. There is no equilibrium 

volumes smaller than 
3
TV

. 

You may want to play with different values of TV .  

Exercise v3. 
 
In the Cellular Potts Model, there are two critical temperatures. Around the temperature of 

dissociation, ETc 81  , where 
2
cc

cm

J
JE  , a single pixel has a long life-time, and a cell 

may dissociate (single spins disconnect from the rest of the cell). When the temperature is of the 

order of ENTc 2
2  , for which the energy and entropy of the system are comparable (the 
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temperature of spinoidal decomposition), the identities of the cell pixels and the medium pixels 
merge. The cell should “evaporate”. 

Begin with a NN   square cell ( 5N ) with 252  NVT , 10cmJ , 2ccJ , and V  

much (not too much) larger than 
'

0v  (here equal to 62.0 ). Start from 0T  (nothing unusual 

should happen). Then, increase T  until it reaches 721 cT . Check if the cell dissociates. 

Increase T  further until it reaches 2252 cT . See what happens. There should be a competition 

between T  and V  in trying to save the cell from disappearance. 
 
Let us come back to the description of the cell sort simulation. 
 

3.2.3 Contact energy 
  
Now let's take a look at the most important plugin in the cell sort simulation –contact energy 
plugin. It is a somewhat more complicated that corresponding plugin for foam simulation but the 
idea is the same: 
  
<Plugin Name="Contact"> 
   <Energy Type1="Medium" Type2="Medium">0</Energy> 
   <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy> 
   <Energy Type1="Condensing"    Type2="Condensing">2</Energy> 
   <Energy Type1="NonCondensing" Type2="Condensing">11</Energy> 
   <Energy Type1="NonCondensing" Type2="Medium">16</Energy> 
   <Energy Type1="Condensing"    Type2="Medium">16</Energy> 
   <NeighborOrder>2</NeighborOrder> 
</Plugin> 
 

3.2.4 Blob Initializer  
 
The last object that shows up in the configuration file is a steppable called BlobInitializer. 
Remember, we mentioned that steppables are called every MCS. That is true, except when sole 
task of a steppable is to initialize cell field. In this case steppable is called once at the beginning 
of the simulation. What this initializer does, it creates a blob of cells. Each cell is a cube 5x5x1 
(<Width>5</Width>) and they are tightly packed (<Gap>0</Gap>). The additional line 
<CellSortInit>yes</CellSortInit> is used exclusively for cellsort simulation and tells the 
initializer that cells types will be only 0,1,2 or Medium, Condensing, NonCondensing if you 
prefer. You can also specify radius of the blob although this is not a requirement. If you do not 
specify the radius it will be equal to 2/5*x_lattice_dimension. If you want to increase or decrease 
radius from its default value, use <Radius>40</Radius> option. Any space in the lattice unfilled 
with cells becomes Medium i.e. effectively all the cells are immersed in Medium (unless the radius 
is so big that cells fill entire lattice). 
This initializer is one of CompuCell3D stock initializers, so that you do not need to prepare your 
own PIF initialization file. 
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<Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <CellSortInit>yes</CellSortInit>    
   <Radius>40</Radius> 
   <--<Engulfment BottomType="Condensing" TopType="NonCondensing"  
   EngulfmentCoordinate="y" EngulfmentCutoff="50"/> --> 
 </Steppable> 
 
In your initial simulation you will omit Engulfment entry for BlobInitializer. That’s why it is 
commented out now.  
 
The presented syntax of the BlobInitializer is here for compatibility reasons with older versions 
of CompuCell3D. The recommended syntax of this steppable is shown in the example below: 
 
<Steppable Type="BlobInitializer"> 
   <Region> 
     <Gap>0</Gap> 
     <Width>5</Width> 
     <Radius>40</Radius> 
     <Center x="100" y="100" z="0"/> 
     <Types>Condensing,NonCondensing</Types>    
   </Region> 
</Steppable Type="BlobInitializer"> 
 
We can define many blob-like regions in the simulation by using multiple Region definitions. 
For example, the following definition of BlobInitializer:  
 
<Steppable Type="BlobInitializer"> 
     <Region> 
       <Radius>30</Radius> 
       <Center x="40" y="40" z="0"/> 
       <Gap>0</Gap> 
       <Width>5</Width> 
       <Types>Condensing,NonCondensing</Types> 
    </Region> 
 
     <Region> 
       <Radius>20</Radius> 
       <Center x="80" y="80" z="0"/> 
       <Gap>0</Gap> 
       <Width>3</Width> 
       <Types>Condensing</Types> 
    </Region> 
</Steppable> 
 
will result in the initial configuration as show on Figure 6. 
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Figure 6. Defining Multiple regions using BlobInitializer steppable.  
 
Note: When user specifies more than one cell type between <Types> tags (notice, the types have 
to be separated with ',' and there should be no spaces) then cells for this region will be initialized 
with types chosen randomly from the provided list (here the choices would be Condensing, 
NonCondensing). 
Remark: If one of the type names is repeated inside <Types> element this type will get greater 
weighting means probability of assigning this type to a cell will be greater. So for example 
<Types> Condensing,NonCondensing,NonCondensing,NonCondensing </Types> 
Condensing will  assigned to a cell with probability 1/4 and NonCondensing with probability ¾ 
- see example and Figure 7 below: 
 
<Steppable Type="BlobInitializer"> 
     <Region> 
       <Radius>40</Radius> 
       <Center x="50" y="50" z="0"/> 
       <Gap>0</Gap> 
       <Width>5</Width> 
       <Types>Condensing,NonCondensing,NonCondensing,NonCondensing</Types> 
    </Region> 
 </Steppable> 
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Figure 7. Initial condition where 75% cells are NonCondensing and 25% are Condensing 
 
 
Now let’s do some exercises. 

Exercise 1 
 
As we did for foams, explore the effects of changing the temperature on the pattern. We now 
have additional parameters (the strength of the volume constraint and the target volume as well 
as the surface energy), although, as before, only the ratio of energy to temperature matters. 
 
a) If the temperature T=0 what happens (should freeze) 
b) If t is intermediate what happens? 
c) If t is very large what happens? (edges should become rough) 
d) What is the range of T over which these three regimes occur (is there a large intermediate 
regime)? 
 

Exercise 2 
 
Now look at what happens as the strength of the area constraint changes? 
a) If v=0 what happens? (should disappear) 
b) If v is intermediate, what happens? 
c) If v is very large what happens? (Should freeze) 
d) What is the range of v over which these three regimes occur (is there a large intermediate 
regime)? 
 

Exercise 3 
 
Now we will look at the effects of the contact energies. You have five energies to play with. 
 

1. Let 0<JNC<JCC<JNN<JNM=JCM. What happens? Make sure that you adjust lambda and T to 
be in the “middle” regime 

2. Let 0<JCC<JNC<JNN<JNM=JCM. What happens? Now slowly vary JNC from being just 
above JCC to being just below JNN. Does the final pattern change? Does the kinetics of the 
pattern evolution change? 

3. Let 0<JCC<JNN<JNC<JNM=JCM. What happens? Is the result the same or different from b)? 
If JNC is just above JNN is the result different from if JNC is much bigger than JNN? 

4. Let 0<JCC<JNC<JNN<JCM<JNM. What happens? Is the result different if the difference 
between JCM and JNM is small from what happens if it is very large? 

5. Let 0<JCC<JCM<JNN<JNM<JND. What happens? Why? 
6. Let 0<JNM=JCM<JCC<JNC<JNN. What happens? Why? 
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Which contact energy hierarchy leads to simulations shown on Figure 7 and 8? 
 

       
 
Figure 7. Cell dissociation example. Snapshots were taken at T=0 MCS ,T= 100 MCS and 
T=300 MCS 
 

       
 
Figure 8. Checkerboard patterning. Snapshots were taken at T= 0 MCS, T=10 MCS and T=300 
MCS. Notice how quickly final pattern is established 
 
Remark: 
For exercises4,5,6 please use file 
 /Users/mswat/CompuCellFull5_install/cellsort_engulfment_diffusion_2D.xml 
 
as a template (copy it into your private directory). Depending on the exercise you will need to 
modify it. However you will not need to type everything from scratch. 

Exercise 4 
 
Now repeat Exercise 3 starting with the case of engulfment (light cells on the bottom and dark 
cells on the top)? 
 
Hint: You can quickly initialize blob of cells with cells of one type at the bottom and of another 
at the top. Simply use, the following syntax in your BlobInitialzer Steppable: 
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 <Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> 
   <CellSortInit>yes</CellSortInit> 
   <Radius>40</Radius> 
   <Engulfment BottomType="Condensing" TopType="NonCondensing" 
   EngulfmentCoordinate="y" EngulfmentCutoff="50"/> 
 </Steppable> 
 
 
As you can see it looks almost the same as in the previous exersices except there is new line 
which describes engulfment. As you can infer from this syntax, you may specify which cells are 
at the top, which are at the bottom, and by changing the value of EngulfmentCutoff you may 
fix how many cells of a given type there should be. Try to play with this value (remember it must 
be positive integer) and figure out by yourself how it works. Try to find also what 
EngulfmentCoordinate means . The allowed values are x, y, z. See also Figure 8 below. 
 

       
Figure 9. Cell engulfment simulation. Snapshots were taken at T=0 MCS, T=3000 MCS and 
T=9990 MCS. 

Exercise 5 
 
Actually, when cells stick together, the energy between them should be negative.  
 

1. Repeat Exercise 3 for all energies negative (same hierarchy). What happens? 
 

2. Now include the surface area constraint as well. Repeat the exercises in Exercise 3. Are 
the results different? Vary the target surface area as a function of the target volume? 
What happens? For a fixed target surface area, vary the strength of the corresponding 
constraint. Can you identify the same three regimes as in exercises 1 and 2? What are 
these three regimes in this case? 

 
3. Finally, let JNN, JCC and JNC be negative and JNM and JCM be positive. How do your results 

compare to part 1) and 2)? 

Exercise 6 (requires Python scripting) 
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The diffusion of cells is a critical property. Use only one cell type and a fixed value of the target 
volume and surface area and their constraints. Measure the diffusion constant of a single cell (the 
slope of a plot of mean displacement vs t2). 

1. How does the diffusion constant vary with T? 
 

2. How does the diffusion constant vary with J? 
 

3. How does the diffusion constant vary with lambda? 
 

4. We usually think that only energy differences matter, not absolute energy values. Do two 
diffusion experiments, one where J>0 and the other when J<0, but all J and other 
parameters are the same. Are the diffusion constants the same? Why? 

 
5.  

This exercise should be done with Python scripting.  
 

Exersice 7 
 
a) Find as set of adhesion energies that give rise to a three-layer concentric structure:  

 
 
b) If you have made the adhesion energies between medium and the different cell types different, 
set these energies to be the same and repeat.  

Exercise 7 
Repeat Exercise 6 for four concentric cell layers.  
 
Hints:  
1) Look at the ratios of energies between J11 and J22 for the two layer case. Can this apply to the 
three and four layer cases?  
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2) If the number of cells of each type is the same, the outer layers will become very thin. To 
create more of the outer layer cell types, use the feature in the blob initializer: list types of which 
you want more copies multiple times (number of cells of that type is proportional to the number 
of the times that type is listed). 
 

4. Chemotaxis in CompuCell3D 
 
Chemotaxis is one of most important phenomena in almost every aspect of cell biology. In 
layman terms, the chemotaxis is a directed movement of cell or an organism toward (or away 
from) a chemical source (or up/down the chemical concentration gradient). If the cell moves up 
the gradient, we say the chemical is a chemo-attractor, if the opposite takes place the substance is 
called chemo-repellent. The underlying mechanism of chemotaxis might be very complicated 
and in fact is a subject of major research effort. Fortunately, from GGH point of view chemotaxis 
is quite easy implement in the model. As you probably, know, all we need to is to introduce new 
term in the Hamiltonian, which would favor these spin flips that occur in the direction of 
increasing/decreasing concentration (depending if we model chemo-attractants or chemo-
repellents) 
 
The simplest term which does this looks as follows: 
 
         sourcendestinatio xcxcλ=ΔE    (1)   
 
where λ denotes chemotaxis strength coefficient and  ndestinatioxc  is concentration at position at 

which the spin flip takes place and  sourcexc is a concentration at flip-neighbor. 

An alternative form of chemotaxis term which is frequently used in the GGH simulations is the 
following one: 
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a denotes here saturation coefficient. 
 
 
In this set of exercises you will play with chemical fields inside CompuCell3D, diffusion, decay, 
constants, and chemotactic properties of cells. One of the exercises will be described only (no 
xml file will be provided) and you are expected to write PIF, and xml files for this particular 
simulation. You will not have to use any scripting language for PIF file generation. 

Exercise 1 
 
Before you begin, make sure to copy amoebae_2D.xml, amoebaConcentrationField_2D.txt and 
amoebae_2D.pif files from Demos/amoebae to your private directory. 
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This simulation consists of two cells – amoeba and bacteria – surrounded by a chemical, which 
serves as chemo-attractant/chemo-repellent.  
 
Open up the simulation in the Player, look at the concentration field and try changing chemotaxis 
parameters. 
 
a) Start with very small  Can you observe chemotaxis at all? 
b) Start increasing  What happens? 
c) Reverse sign of  for one type of cell (bacteria for example). Is chemo-attractant becoming 
chemo-repellent?  
 

    
Figure 10. Demonstration of chemotaxis in CompuCell3D. Both cells are attracted to to upper 
left corner of the lattice. Snapshots were taken at T=10 MCS, T=70 MCS and T=200 MCS 
 

       
Figure 11. Chemoatractant concentration view. Snapshots were taken at T=10 MCS, T=70 MCS 
and T=200 MCS  
 
Python equivalent of Demos/amoebae/amoebae_2D.xml configuration file is stored in 
Demos/PythonOnlySimulationsExamples/amoebae-2D-new-syntax.py 
 

4.1Solving diffusion equations using CompuCell3D 
As a next step we will see how we can use CompuCell3D as a simple PDE solver. We will 
qualitatively examine the solution of the diffusion equation (with pulse initial condition) and 



36 

check numerical stability limits.  
Copy the following files: diffusion_2D.xml diffusion_2D.pulse.txt from CompuCell3D 
installation directory to your private directory. Open xml file in the editor and see what sections 
are needed in order to use CompuCell3D as a PDE solver. As you can see most of the plugins 
have been removed. You need to, however, include CellType plugin and list of all the cell types 
that you are going to use in PDE solver description. By default you are required to list Medium  
Observe that in the Potts section of the xml file, the value of Flip2DimRatio element has been 
changed to 0.0.  
 
<Flip2DimRatio>0.0</Flip2DimRatio> 

 
This prevents CompuCell3D from doing any spin flips. Nevertheless steppables (PDE solvers are 
steppables) will still run. 
 
The way to impose initial condition for the diffusion equation is to use initial concentration file 
and specify its name in the DiffusionData section of the FlexibleDiffusionSolver: 
 
<Steppable Type="FlexibleDiffusionSolverFE"> 
     <DiffusionField> 
        <DiffusionData> 
            <FieldName>FGF</FieldName> 
            <DiffusionConstant>0.000</DiffusionConstant> 
            <DecayConstant>0.100</DecayConstant> 
 
       <ConcentrationFileName> 
            diffusion_2D.pulse.txt 
            </ConcentrationFileName> 
 
     <!--DoNotDecayIn>Medium</DoNotDecayIn-->   
        </DiffusionData> 
    </DiffusionField> 
 </Steppable> 

 
In our case file name is diffusion_2D.pulse.txt. The format of the file is really simple: 
 
x  y  z  concentration 

 
where x, y, z denote value of the coordinate of a given pixel, and concentration denotes 
numerical value of chemical concentration at that pixel. 
 
To create a pulse in the middle of the 55x55 lattice all we need is in fact one single line: 
 
27   27   0   2000.0 

 
As you can see it is quite straightforward to use CompuCell3D as a PDE solver.  
 
Now let’s do some exercises.  



37 

 
Remark: you have to switch views in the Player  from Cell Field to chemical concentration (e.g. 
FGF) to see simulation results. 
 

     
Figure 12. Solving diffusion equation using CompuCell3D. Snapshots of the FGF field were 
taken at T=0 MCS, T=200 MCS and T=990 MCS 
For completeness, and because of relatively small size, we show configuration file 
Demos/PythonOnlySimulationsExamples/diffusion-2D-new-syntax.py where we use Python 
syntax to setup simulation which solves diffusion equation.  
 
Remark: Depending on your preference you may use either CC3DML or Python to configure 
CompuCell3D simulations. We will keep using CC3DML to explain CompuCell3D concepts as 
CC3DML can be easily indented for readability while Python syntax, being indentation sensitive, 
cannot. Regardless whether you use Python or CC3DML you are passing the same information 
to CC3D. 
 
def configureSimulation(sim): 
   import CompuCellSetup 
   from XMLUtils import ElementCC3D 
 
   cc3d=ElementCC3D("CompuCell3D") 
   potts=cc3d.ElementCC3D("Potts") 
   potts.ElementCC3D("Dimensions",{"x":55,"y":55,"z":1}) 
   potts.ElementCC3D("Steps",{},1000) 
   potts.ElementCC3D("Temperature",{},0) 
   potts.ElementCC3D("Flip2DimRatio",{},0.0) 
 
   cellType=cc3d.ElementCC3D("Plugin",{"Name":"CellType"}) 
   cellType.ElementCC3D("CellType",\ 
   {"TypeName":"Medium", "TypeId":"0"}) 
 
   flexDiffSolver=cc3d.ElementCC3D("Steppable",\ 
   {"Type":"FlexibleDiffusionSolverFE"}) 
   diffusionField=flexDiffSolver.ElementCC3D("DiffusionField") 
   diffusionData=diffusionField.ElementCC3D("DiffusionData") 
   diffusionData.ElementCC3D("FieldName",{},"FGF") 
   diffusionData.ElementCC3D("DiffusionConstant",{},0.10) 
   diffusionData.ElementCC3D("DecayConstant",{},0.0) 
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   diffusionData.ElementCC3D("ConcentrationFileName",{},\ 
   "Demos/PythonOnlySimulationsExamples/diffusion_2D.pulse.txt") 
 
   CompuCellSetup.setSimulationXMLDescription(cc3d) 

 
Remark: Notice above, that in Python “\” is a line continuation symbol and we had to use it few 
times to properly format the listing 

Exercise 2 
 
Run simulation with different values of diffusion constants: 
start with small diffusion constant ~ 0.01 
Increase diffusion constant until you reach numerical instability regime. How can you tell that 
solution is unstable? What is the critical value of the diffusion constant at which numerical 
method breaks? Do you know why solution becomes unstable? 
Add decay term to the diffusion equation. Does the presence of the decay term influence 
stability/instability? 
 
Now try changing boundary conditions on the lattice from no flux to periodic and see the 
concentration pattern: 
 
<Boundary_x>Periodic</Boundary_x> 
<Boundary_y>Periodic</Boundary_y> 

 

     
Figure 13. Numerical instabilities in the solution of the diffusion equation in 2 dimensions. 
Snapshots were taken at T=0 MCS, T=70 MCS and T=200 MCS 

Exercise 3 
 
Let’s come back to amoebae_2D.xml simulation. One way to track cells in the chemical field 
view is to let cells chemotax and let the chemical decay inside the cell only. This way the place 
that was occupied by the cell would be marked as a depleted concentration region. To enable 
“cell tracking” make decay constant non-zero and uncomment the line 
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<!--DoNotDecayIn>Medium</DoNotDecayIn--> 

 
We hope you remember how to comment and uncomment xml elements. With this line present, 
the chemical will decay everywhere except Medium, which means it will decay only inside cells. 
Now you can switch to concentration view and see how cell tracking works. Are there any 
pathological effects that you observe? What values of decay constants have you used? 

      
Figure 14. Demonstration of “chemical tracking” in CompuCell3D. Snapshots were taken at 

T=10 MCS, T=70 MCS and T=200 MCS. The smudge of depleted concentration is achieved by 
enabling concentration decay in the region occupied by cells. 

4.2 Bacterium Macrophage Simulation 
 
The xml file for this exercise will be written by you. The idea of the simulation is the following: 
you have two cells (bacterium and macrophage) placed in the maze. Bacterium secretes a 
chemical (call it ATTR – for attractant) which is free to diffuse everywhere except walls of the 
maze. Another cell, the macrophage is attracted to ATTR and chemotacts up the chemical 
gradient. Eventually macrophage will reach stationary bacterium. Your task here will be to write 
xml simulation file and find reasonable parameters for diffusion/decay of chemical and  
chemotaxis. 
 
Shortcut: if you are in a hurry you may use prewritten xml file that comes with CompuCell3D – 
Demos/bacterium_macrophage/bacterium_macrophage 2D.xml. However, please do make sure 
you understand what's in it. In particular see how we wrote pif file 
bacterium_macrophage_2D.pif. 
Python equivalent of Demos/bacterium_macrophage/bacterium_macrophage 2D.xml is stored in  
Demos/PythonOnlySimulationsExamples/bacterium_macrophage-player-new-syntax.py 
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Figure 15. Snapshots of experiment where macrophage chases bacterium in the blood stream. In 
the last snaphot macrophage is about to capture the bacterium. 
This video is taken from a 16-mm movie made in the 1950s by the late David Rogers at 
Vanderbilt University. It was given to me via Dr. Victor Najjar, Professor Emeritus at Tufts 
University Medical School and a former colleague of Rogers. It depicts a human 
polymorphonuclear leukocyte (neutrophil) on a blood film, crawling among red blood cells, 
notable for their dark color and principally spherical shape. The neutrophil is "chasing" 
Staphylococcus aureus microorganisms, added to the film. The chemoattractant derived from the 
microbe is unclear but may be complement fragment C5a, generated by the interaction of 
antibodies in the blood serum with the complement cascade, and/or bacterial N-formyl peptides. 
Blood platelets adherent to the underlying glass are also visible. Notable is the characteristic 
asymmetric shape of the crawling neutrophil with an organelle-excluding leading lamella and a 
narrowing at the opposite end culminating in a "tail" that the cell appears to drag along. 
Contraction waves are visible along the surface of the moving cell as it moves forward in a 
gliding fashion. As the neutrophil relentlessly pursues the microbe it ignores the red cells and 
platelets. However, its leading edge is sufficiently stiff (elastic) to deform and displace the red 
cells it bumps into. The internal contents of the neutrophil also move, and granule motion is 
particularly dynamic near the leading edge. These granules only approach the cell surface 
membrane when the cell changes direction and redistributes its peripheral "gel." After the 
neutrophil has engulfed the bacterium, note that the cell's movements become somewhat more 
jerky, and that it begins to extend more spherical surface projections. These bleb-like 
protruberances resemble the blebs that form constitutively in the M2 melanoma cells missing the 
actin filament crosslinking protein filamin-1 (ABP-280) and may be telling us something about 
the mechanism of membrane protrusion. Information credit: Thomas P. Stossel (Brigham and 
Women's Hospital and Harvard Medical School), June 22, 1999 

Exercise 4 
 
a) First, let’s construct the maze and place there the two cells. You do not need to get fancy here. 
A maze is simply few rectangular blocks of type Wall. Make sure that in the CellType plugin 
type Wall is declared as frozen i.e. it does not participate in spin flips. You can freeze any cell 
type by adding extra attribute Freeze=”” to the line where you declare this cell type, as shown 
below: 
 
<Plugin Name="CellType"> 
    <CellType TypeName="Medium" TypeId="0"/> 
    <CellType TypeName="Bacterium" TypeId="1"/> 
    <CellType TypeName="Macrophage" TypeId="2"/> 
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    <CellType TypeName="Wall" TypeId="3" Freeze=””/>     
 </Plugin> 

   
Now, you need write PIF file for the simulation. I have included sample PIF file below. If you do 
not remember PIF file syntax, see earlier exercises on foams form more explanations.  
 
0 Wall 10 20 10 30 0 0 
1 Wall 25 40 35 50 0 0 
. 
. 
. 
10 Bacterium 5 5 5 5 0 0 
11 Macrophage 70 70 70 70 0 0 

 
Notice that z_low and z_high are 0 and 0 – which means we are in 2D. There is nothing that 
would prohibit us from being in 3D but in 2D the simulation will run faster. 
 
To see initial configuration you may turn off spin flips (how?) and run simulation. Make any 
corrections as necessary. Once your maze looks nice and cells are positioned properly you may 
start coding FlexibleDiffusionSolver 
 
b) The main difference is that there is no initial chemical concentration in the system i.e. the 
line  
 
<ConcentrationFileName>amoebaConcentrationField_2D.txt</ConcentrationFileNam>  

 
should be removed. 
 
Now you need to tell CompuCell3D that Bacterium should secrete chemical ATTR at a certain 
rate. The way to do it is to use SecretionData section inside FlexibleDiffusionSolver. With that 
, every MCS each pixel occupied by Bacterium will increase its concentration by given amount 
(here it will be 0.5) 
 
<Steppable Type="FlexibleDiffusionSolverFE"> 
  <DiffusionField> 
    <DiffusionData> 
      <FieldName>ATTR</FieldName> 
      <DiffusionConstant>0.100</DiffusionConstant> 
      <DecayConstant>0.000</DecayConstant>   
      <DoNotDiffuseTo>Wall</DoNotDiffuseTo>    
    </DiffusionData> 
 
    <SecretionData> 
      <Secretion Type=”Bacterium”>0.5</Secretion>  
    </SecretionData>  
 
  </DiffusionField> 
</Steppable> 
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Notice that we have also added line which keeps chemical from diffusing into the wall.  
c) Add chemotaxis for Macrophage. 
d) Set reasonable surface and volume constraints for Bacterium and Macrophage. 
e) Is it necessary to add Contact plugin?  
f) Put together xml simulation description file and run the actual simulation. Which parameters 
need to be fine-tuned? 
 
g) So far we have been using the simplest chemotaxis energy formula. Now, lets try energy term 
with saturation coefficient. To accomplish that you need to specify extra attribute in the 
chemotaxis description: 
 
<ChemotaxisByType Type="Bacterium" Lambda="200" SaturationCoef=”10”/> 

 
The appearance of additional attribute SaturationCoef tells CompuCell3D to use alternative 
formula for chemotaxis. Notice also that the meanings of  coefficients in the two chemotaxis 
formulas are different and you will need to find new values of  for the new form of chemotaxis 
energy term. 
 
h) How would you simulate process in which Macrophage eats Bacterium?  
i) What can be done to prevent cells from sticking to the borders of the lattice or to the cells of 
type Wall? 
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Figure 16. Most basic bacterium-macrophage simulation. Red blood cells are static in this 
simulation. Bacterium is secreting chemical signal which attracts macrophage. Sizes of 
bacterium and macrophage are roughly the same. We show, both, cell field and chemoattractant 
(here called ATTR) views. Snapshots were taken at T=10 MCS T=660 MCS and T=720 MCS 

Exercise 5 
 
In this exercise we will make a series of modification to the bacterium_macrophage_2D.xml 
file and will come up with some interesting models.  
 
a) make decay constant non-zero (bacterium_macrophage_2D_v2.xml ) 
b) Increase size of macrophage and make bacterium smaller 
(bacterium_macrophage_2D_v4.xml).  Make sure you understand how to use VolumeFlex and 
Surface Flex plugins. You may need to fine tune surface and volume parameters so that cells do 
not disappear or fragment.  
c) Add one more macrophage and three bacteria cells (bacterium_macrophage_2D_v6.xml) and 
see corresponding pif file. Try placing macrophages in different initial positions . 
d) Try changing decay constant (bacterium_macrophage_2D_v7.xml). What are the results? 
e) If you observer cells sticking to the walls try adjusting contact energies . How? (see 
bacterium_macrophage_2D_v8.xml) 
f) Now instead of static Walls cells in the middle of the lattice introduce Red Cells that can 
actually move. (bacterium_macrophage_2D_9.xml).  
g) Introduce Chemoreppelant secreted by macrophage. Pick secretion values, decay constants 
and chemotaxis constant. Note, that only bacterium is sensitive to chemorepelant.  How do you 
code it in xml? (bacterium_macrophage_2D_v10.xml).  
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Figure 17. Realistic-looking bacterium macrophage simulation. Red blood cells are motile. We 
show, both, cell field and chemoattractant (here called ATTR) views. Snapshots were taken at 
T=400 MCS , T=1550 MCS and T=7840 MCS. 
 
This exercise demonstrates what it takes to build and test a model using CompuCell3D. Yes, it is 
an iterative process, where you start from simple model and start adding features, but as you can 
see it is not that painful. 
 
 


