
CompuCell3D Python Scripting manual

Version 3.6.0

Maciej H. Swat, Julio Belmonte, Benjamin L. Zaitlen

Biocomplexity Institute and Department of Physics, Indiana University, 727 East 3rd
Street, Bloomington IN, 47405-7105, USA

-1-

The focus of this manual is to teach you how to use Python scripting language to develop
complex CompuCell3D simulations. We will assume that you have a working knowledge
of Python. You do not have to be a Python guru but you should know how to write
simple Python scripts that use functions, classes, dictionaries and lists. You can find
decent tutorials online (e.g. http://hetland.org/writing/instant-hacking.html,
http://hetland.org/writing) or simply purchase a book on introductory Python
programming.

Introduction	

If you have been already using CompuCell3D you probably have realized the limitations
of CC3DML (CompuCell3D XML model specification format). Simulations written
CC3DML are “static”. That means you specify initial cellular behaviors, and throughout
the simulation those behaviors descriptions remain unchanged. If your goal is to run
simple cell-sorting or grain coarsening simulations CC3DML is all you need. However if
you are seriously thinking about building complex biological models you have to look
beyond markup-languages.
Fortunately, CompuCell3D provides easy to use and learn Python scripting interface
which allows users to build complex simulations without writing low-level code which
requires compilation. If you have used Matlab or Mathematica you are familiar with such
approach – somebody writes all number crunching functions and provides you with
scripting language which you use to “glue” those functions together to build
mathematical models. This approach is very successful because it allows non-
programmers to enter the arena of mathematical modeling.
Python scripting available in CompuCell3D offers modelers significant flexibility to
construct models where behaviors of individual cells change (according to user
specification) as simulation progresses.

I case you wonder if using Python degrades perfoemance of the simulation we want to
asure you that unless you use Python “unwisely” you will not hit any performance barrier
for CompuCell3D simulations. Yes, there will be things that should be done in C++
because Python will be way to slow to handle certain tasks, however, throughout our two
years experience with CompuCell3D we found that 80 % of times Python will make your
life way easier and will not impose ANY noticeable degradation in the performance.
Whatis more important is that with Python scripting you will be able to dramatically
increase your productivity and it really does not matter if you know C++ or not. With
Python you do not compile anything, just write script and run. If a small change is
necessary you edit source code and run again. No time is wasted for dealing with
compilation/installation of C/C++ modules and Python script you will write will run on
any operating system (Mac, Windows, Linux).

-2-

How	to	use	Python	in	CompuCell3D	
Probably the best way to learn Python scripting in CC3D is (besides reading this manual)
to study examples in cluded in CC3D package. Those are very simple simulations that
demonstrate usage of most important CC3D features.
Every CC3D simulation that uses Python consists of the, so called, main Python script.
The structure of this script is fairly “rigid” (templated) which implies that, unless you
know exactly what you are doing, you should make changes in this script only in few
disctinc places, leaveing the rest of the template untouched. The goal of the main Python
script is to setup a CC3D simulation and make sure that all modules are initialized in the
correct order. Typically, the only place where you, as a user, will modify this script is
towards the end of the script where you register your extension modules (steppables and
plugins).

Another task of main Python script is to load CC3DML file which contains initial
description of cellular behaviors. You may ask, why we need CC3DML file when we are
using Python. Wasn’t the goal of Python to replace CC3DML? There are two answers to
this question short and long. The short answer is that CC3DML provides the description
of INITIAL cell behaviors and we will modify those behaviors as simulation runs using
Python. But we still need a starting point for our simulation and this is precisely what
CC3DML file provides. If you, however, dislike XML, and would rather not use separate
file there is good news too. You may write Python function which encodes the content of
the CC3DML file using straightforward Python syntax. We will explain how to do this
later. For now, let’s assume that we will still load CC3DML along with main Python
script.

Let’s look at a simple example first:
File: examples_PythonTutorial\cellsort_2D\Simulation\cellsort_2D.py
import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

-3-

File: examples_PythonTutorial\cellsort_2D\Simulation\cellsort_2D.xml
<CompuCell3D>
 <Potts>
 <Dimensions x="100" y="100" z="1"/>
 <Steps>10000</Steps>
 <Temperature>10</Temperature>
 <NeighborOrder>2</NeighborOrder>
 </Potts>

 <Plugin Name="Volume">
 <TargetVolume>25</TargetVolume>
 <LambdaVolume>2.0</LambdaVolume>
 </Plugin>

<Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Condensing" TypeId="1"/>
 <CellType TypeName="NonCondensing" TypeId="2"/>
 </Plugin>

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy>
 <Energy Type1="Condensing" Type2="Condensing">2</Energy>
 <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>
 <Energy Type1="NonCondensing" Type2="Medium">16</Energy>
 <Energy Type1="Condensing" Type2="Medium">16</Energy>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

 <Plugin Name="CenterOfMass"/>

 <Steppable Type="BlobInitializer">
 <Gap>0</Gap>
 <Width>5</Width>
 <CellSortInit>yes</CellSortInit>
 <Radius>40</Radius>
 </Steppable>

</CompuCell3D>

File: examples_PythonTutorial\cellsort_2D\cellsort_2D.cc3d
<Simulation version="3.5.1">
 <XMLScript>Simulation/cellsort_2D.xml</XMLScript>
 <PythonScript>Simulation/cellsort_2D.py</PythonScript>
</Simulation>

What is going on here? Two xml files and one Python script - what goes where?
When you want to run this simulation you open up .cc3d file -
examples_PythonTutorial\cellsort_2D\cellsort_2D.cc3d – which, as you can tell, stores
names of the files files that actually implement the simulation, and most importantly the
.cc3d file tells you that both cellsort_2D.xml and cellsort_2D.xml are part of the
same simulation. CompuCell3D analyzes .cc3d file and when it sees <PythonScript>
tag it knows that users will be using Python scripting. In such situation CompuCell3D

-4-

opens Python script specified in .cc3d file (here cellsort_2D.py) and if user specified
CC3DML script using <XMLScript> tag it loads this CC3DML file as well. In other
words, .cc3d file is used to link Python simulation files together in an unbigous way. For
more discussion on this topic please see CompuCell Manual.

Let’s analyze main Python script now.
The import sys line provides access to standard functions and variables needed to
manipulate the Python runtime environment. The next two lines,

from os import environ
from os import getcwd

import environ and getcwd housekeeping functions into the current namespace (i.e.,
current script) and are included in all our Python programs. In the next three lines,

import string
sys.path.append(environ["PYTHON_MODULE_PATH"])
import CompuCellSetup

we import the string module, which contains convenience functions for performing
operations on strings of characters, set the search path for Python modules and import the
CompuCellSetup module, which provides a set of convenience functions that simplify
initialization of CompuCell3D simulations.

Next, we create and initialize the core CompuCell3D modules:

sim,simthread = CompuCellSetup.getCoreSimulationObjects()
CompuCellSetup.initializeSimulationObjects(sim,simthread)

We then create a steppable registry (a Python container that stores steppables, i.e., a list
of all steppables that the Python code can access) and pass it to the function that runs the
simulation:

steppableRegistry=CompuCellSetup.getSteppableRegistry()
CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Once we open .cc3d file in CompuCell3D the simulation begins to run. As you can see
looks exactly as a basic cell-sorting simulation that you typically would run using just
cellsort_2D.xml configuration file. We hope however that at this point we don’t have to
remind you why we went to extra trouble of bringing Python to the picture.

Our next task is to extend above simulation and give you a preview of what you can
actually accomplish in Python. Now that you know how CompuCell3D simulations are
structured we will only show files which are relevant to the discussion.

Looping over cell list
The next example is based on cellsort_2D_info_printer example. We will show you how
to extract soma basic information from CC3D while simulation is running.

The module we will develop here is called in CompuCell3D terminology a steppable.
Those are modules which are called by CompuCell3D engine after every MCS or with
user specified frequency.

-5-

A little bit of theory first. A Python steppable typically inherits SteppableBasePy class
which provides a lot of functionality and hides a lot of boiler-plate code so that scripting
is easier.

If you don’t know what inheritance is here is a simple example: assume you have a class,
call it BaseClass with 3 functions functionA, function and functionC:

class BaseClass:

 def __init__(self):

 print "Constructor"

 def functionA(self):

 print "Hello I am function A"

 def functionB(self):

 print "Hello I am function B"

 def functionC(self):

 print "Hello I am function C"

You also want to have another class called UsefulSmartClass which has exactly the same
3 functions and one more function called (you guessed it right) functionD. You have two
choices

1) Copy and paste in which case you end up with the following class

class UsefulButNotSmartClass:

 def __init__(self):

 print "Constructor"

 def functionA(self):

 print "Hello I am function A"

 def functionB(self):

 print "Hello I am function B"

 def functionC(self):

 print "Hello I am function C"

 def functionD(self):

 print "Hello I am function D"

-6-

2) Use inheritance:

class UsefulSmartClass(BaseClass):

 def __init__(self):

 BaseClass.__init__(self)

 def functionD(self):

 print "Hello I am function D"

When you use the two classes (UsefulSmart and UsefulButNotSmartClass) the results
will be the same. They both have 4 functions. Without going into too much details
inheritance is a way of importing content of one class into another. Yes, it saves you
typing and hides code. There is way more than that to inheritance but for our purposes
let’s focus on those two aspects of inheritance – hiding code in the base class importing it
to the child class (in our case UsefulSmartClass).

As we have already mentioined our CompuCell3D steppables will inherit
SteppableBasePy class. The code for this class is stored in
PythonSetupScripts\PySteppables.py in your CC3D installation directory if you are
interested what’s inside it (as you start developing more complex simulations you will
almost certainly look into this code anyway). Detailed information on functions/members
of SteppableBasePy is presented in the Appendix A. Let’s take a look at our steppable:

File: examples_PythonTutorial\cellsort_2D_info_printer\Simulation\
cellsort_2D_steppables_info_printer.py

from PySteppables import *

import CompuCell

import sys

class InfoPrinterSteppable(SteppableBasePy):

 def __init__(self,_simulator,_frequency=10):

 SteppableBasePy.__init__(self,_simulator,_frequency)

 def start(self):

 print "This function is called once before the simulation"

 def step(self,mcs):

 print "This function is called every 10 MCS"

 for cell in self.cellList:

 print "CELL ID=",cell.id, " CELL TYPE=",cell.type

 if not (mcs % 20):

 counter=0

 for cell in self.cellListByType(1):

-7-

 print "BY TYPE CELL ID=",cell.id,\
 " CELL TYPE=",cell.type,

 counter+=1

 for cell in self.cellListByType(2):

 print "BY TYPE CELL ID=",cell.id, " CELL \
 TYPE=",cell.type

 counter+=1

 def finish(self):

 print "Called at the end of simulation"

As you can see each steppable will contain by default 3 functions:

1) start(self)

2) step(self,mcs)

3) finish(self)

Those 3 functions are imported , via inheritance, from SteppableBasePy (which in turn
imports SteppablePy). The nice feature of inheritance is that oncve you import functions
from base class you are free to redefine their content in the child class. So in our example
we redefine all 3 functions. Had we not redefined e.g. finish functions then at the end
simulation the implementation from SteppableBasePy of finish function would get
called (which as you can see is an empty function) .

As you can already tell all interesting things happen in the step function. We are visiting
all cells in the simulation and print their cell id and cell type:

 for cell in self.cellList:

 print "CELL ID=",cell.id, " CELL TYPE=",cell.type

It looks like a bit of magic here. Out of the blue we get self.cellList which behaves
like Python container with CC3D cell objects. The way it happens is that in the
constructor of SteppableBasePy base class we do a lot of initialization andamong other
things we initialize class member called self.cellList to point to Python object which
know how to extract cell inventory infoemation from underlying C++ code. Thus by
using inheritance we have gained access to internal C++ structures of CompuCell3D. It is
cool, powerful, simple, and dangerous.

Thew only thing that we do inside the for loop is to print basic information about each
cell – its id and type.

In case you wonder what other cell attributes you can print from Python, use dir(cell)
statement to see what attributes are available in each cell:

-8-

for cell in self.cellList:

 print dir(cell)

Now, once we have written a steppable we need to place a reference to it in the main
Python script (we are simply extending our original main script template):

import sys

from os import environ

from os import getcwd

import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here

steppableRegistry=CompuCellSetup.getSteppableRegistry()

from cellsort_2D_steppables_info_printer import InfoPrinterSteppable

infoPrinterSteppable=InfoPrinterSteppable(_simulator=sim,_frequency=10)

steppableRegistry.registerSteppable(infoPrinterSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

-9-

We first import InfoPrinterSteppable class from
cellsort_2D_steppables_info_printer.py.

Next we create steppable object (infoPrinterSteppable) of class
InfoPrinterSteppable (in other words we instantiate class InfoPrinterSteppable).
Finally, and this is essential step we register the newly created object with
steppableRegistry. The registration is a way of telling CompuCell that the new object we
created should be used as a Python steppable in the simulation and its 3 functions -
start, step and finish - will be called at appropriate times. Unregistered steppables are
simply ignored.

When creating steppable we have passed as first argument of the steppable constructor a
reference to simulator object - _simulator=sim - (this is main CC3D C++ object) and as
a secod argument we _frequency=10. _frequency tells CC3D to call step function every
_frequency MCS.

Notice that infoPrinterSteppable is a name of the variable whereas
InfoPrinterSteppable is a name of the class. The difference is small - one starts with
capital letter (name of the class) and one with lower case letter (name of the variable).
This distinction is important because Python is case-sensitive.

Quite often in your simulation you will want to check on cells of certain types. One way
to accomplish could look like this:
 for cell in self.cellList:

 if cell.type==2:

 print "CELL ID=",cell.id, " CELL TYPE=",cell.type

However you still are looping over all cells and select only those which interest you. A
better way is to use cellListByType container which preselects cells of a given type. In
the example below only cells of type 2 are selected:
 for cell in self.cellListByType(2):

 print "BY TYPE CELL ID=",cell.id, " CELL \
 TYPE=",cell.type

Again, all the code that preselects cells is hidden in SteppableBasePy . What you should
know though that type selection is done in C++ which makes is much faster than doing it
in pure Python – another reason to use self.cellListByType.

To conclude this example we will show how you can output information from the
simulaton to a file:

class InfoPrinterSteppable(SteppableBasePy):

 def __init__(self,_simulator,_frequency=10):

 SteppableBasePy.__init__(self,_simulator,_frequency)

 self.file=open("Output.txt","w")

-10-

 def step(self,mcs):

 for cell in self.cellList:

 self.file.write("Cell id=%d type=%d volume=%d\n"\
 %(cell.id,cell.type,cell.volume))

The only thing we have changed here was to first open the file (“Output.txt”) for writing :

self.file=open("Output.txt","w")

and writing content of the file using:

self.file.write("Cell id=%d type=%d volume=%d\n"\
%(cell.id,cell.type,cell.volume))

The syntax to to write to a file is as follows:

file.write(“formatting string” %(values for formating string))

The formatting string contains regular text and formatting characters such as '\n'
denoting end of line, %d denoting integer number, %f denoting floating point number and
%s denoting strings. For more information on this topic please see any Python manual or
see online Python documentation.

The reason we have chosen the example with cell inventory simulation is that this is one
of the most frequent tasks with CPM modeling. You usually want to run simulation and
then iterate over all the cells and do various tasks. This example gives you a template that
you may reuse for your simulations.

Important: In the above example we were printing cell attributes such as cell type, cell
id etc. Sometimes in the simulations you will have two cells and you may want to test if
they are different. The most straightforward Python construct would look as follows:

cell1=self.cellField.get(pt)

cell2=self.cellField.get(pt)

if cell1 != cell2 :

 #do something

Because cell1 and cell2 point to cell at pt i.e. the same cell then cell1 != cell2
should return false. Alas, written as above the condition is evaluated to true. The reason
for this is that what is returned by cellField is a Python object that wraps a C++ pointer
to a cell. Nevertheless two Python objects cell1 and cell2 are different objects because

-11-

they are created by different calls to self.cellField.get() function. Thus, although
logically they point to the same cell, you cannot use != operator to check if they are
different or not.

The solution is to use the following function

CompuCell.areCellsDifferent(cell1,cell2)

or write your own Python function that would do the same:

def areCellsDifferent(self,_cell1,_cell2):

 if (_cell1 and _cell2 and _cell1.this!=_cell2.this) or\
 (not _cell1 and _cell2) or (_cell1 and not _cell2):

 return 1

 else:

 return 0

Attaching cell attributes
In this example we will teach you how to attach extra attribute to the cell from the Python
level. For example, you may want every cell to have a countdown clock that will be
recharged once its value reaches zero.
To accomplish this task we will need a steppable that will manage the clock but we also
need a way to attach additional attribute that will serve as a clock. One way to do that
would be to add line
int clock

to Cell.h file and recompile entire package. Cell.h is a C++ header file that defines basic
properties of the CompuCell3D cells. This, however, is extremely inefficient solution
because in this case you will need to recompile the whole package. And if you want to
add another attribute, you will be recompiling again. Most important your simulation will
not be portable because it will be only runnable using a particular version of
CompuCell3D that has been modified.

A much better approach is to do it from Python level. To be fair, in certain cases adding
attribute at C++ level makes sense (that's why we have volume, target volume etc.
defined in the C++ code for Cell), however, if you need an attribute for one particular
simulation, you better do it in Python.

Let's see how it is done in cellsort_2D_extra_attrib example. In the
cellsort_2D_extra_attrib.py file insert the following after “#Create extra player fields here or
add attributes” line:

-12-

pyAttributeAdder,LISTAdder=CompuCellSetup.attachListToCells(sim)

IMPORTANT: Most of the Python templates can be easily generated using Twedit++ -
CC3D edition. Simul;y open new project Wizard and there you will have an option to
autogenerate templates of Python-based simulations.

It is important that you keep pyAttributeAdder,listAdder on the left hand side of the
equation as it prevents those two objects created inside attachListToCells(sim) from
being garbage collected.

At this point every time a new cell is created it is going to have a additional list attribute
attached to it. This list can be modified from Python level as we will show you in a
second.

Here is the body of the new steppable that we have just developed:

class ExtraAttributeCellsort(SteppableBasePy):

 def __init__(self,_simulator,_frequency=10):

 SteppablePy.__init__(self,_simulator,_frequency)

 def step(self,mcs):

 for cell in self.cellList:

 list_attrib=CompuCell.getPyAttrib(cell)

 print "length=",len(list_attrib)

 list_attrib[0:2]=[cell.id*mcs,cell.id*(mcs-1)]

 print "CELL ID modified=",list_attrib[0]," ",\
 list_attrib[1]

 As you can see we declared only step function which is OK as we pointed it out earlier.

Inside step function we iterate over inventory of cells, however this time instead of just
printing cell information we modify additional cell attribute. Moreover we have also done
a nice trick. Namely, when we registered listAdder we asked CompuCell3D to attach to
very cell as additional attribute a list and this list has one empty element (integer number
initialized to zero). By doing assignment:

-13-

list_attrib[0:2]=[cell.id*mcs,cell.id*(mcs-1)]

we replace first two entries of the list with cell.id*mcs , cell.id*(mcs-1).

One interesting thing here is the fact that initially we had just one element in the list but
using list_attrib[0:2] construct we tell Python to replace first two entries of the list
with cell.id*mcs , cell.id*(mcs-1) and if the list does not have enough entries they
will be added automatically.

We can also write the following:

list_attrib[0:3]=[cell.id*mcs,cell.id*(mcs-1),”Another text attribute”]

In this case we added third entry to the list and in this case it is a simple text constant.
This demonstrates that lists in Python can group various objects and they do not need to
be of the same type.

As you can see, this is quite powerful technique, which allows you to store all sorts of
Python objects inside a list attrached to each CC3D cell.

You need to be however careful when you work with a simulation in which new cells are
created because once a cell has been created during the simulation, the content of the
additional attribute is initialized to one-element list (with zero being the only list entry).
In such a case you need to to account for that fact and if you use additional attribute you
first need to make sure that it has been properly initialized (i.e. usually right after create a
cell in e.g. mitosis steppable you should modify the content of the list attached to a cell).

One way to do it would be to check either a size of the list or the content of the first
element and make sure that they are not the defaults.

Besides attaching Python lists to each CC3D cell, CompuCell3D allows users to use
Python dictionaries as cell attributes. Dictionaries are often more convenient to use than
lists especially when you will be trying to store many objects. With lists you will have to
memorize index of the object, while dictionaries will allow you to reference object using
text labels. Here is a example of the main script using a dictionary instead of a list:

import sys

from os import environ

from os import getcwd

import string

-14-

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes

pyAttributeAdder,dictAdder=CompuCellSetup.attachDictionaryToCells(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here

steppableRegistry=CompuCellSetup.getSteppableRegistry()

#here we will add ExtraAttributeCellsort steppable

from cellsort_2D_steppables_extra_attrib import ExtraAttributeCellsort

extraAttributeCellsort=ExtraAttributeCellsort(_simulator=sim,\
_frequency=10)

steppableRegistry.registerSteppable(extraAttributeCellsort)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

And the steppable showing how to use dictionaries is shown below:
class ExtraAttributeCellsort(SteppableBasePy):
 def __init__(self,_simulator,_frequency=10):
 SteppableBasePy.__init__(self,_simulator,_frequency)

 def step(self,mcs):
 for cell in self.cellList:
 dict_attrib=CompuCell.getPyAttrib(cell)
 dict_attrib["AttribID"]=cell.id*mcs
 dict_attrib["AttribID_Previous MCS"]=cell.id*(mcs-1)
 print "dict_attrib=",dict_attrib

As you can see, the overall structures of the simulations with list or dictionaries are quite
similar. The only difference is in the way you access and store the attributes. Many users
find working with dictionaries easier than working with lists because they can refer to
items in the dictionary using text label. Additionally if your simulation calls for a list
instead of dictionary you can always store a list as an element of the dictionary:

 dict_attrib=CompuCell.getPyAttrib(cell)
 dict_attrib["ListObject"]=[cell.id*mcs]

-15-

In Python, you construct a list by enclosing coma-separated objects in square brackets.
For example:
list=[a,b,c]

If you want to construct empty list you simply type:

list=[]

Adding Python Objects as attributes

The above examples demonstrated how to attach simple attributes to a cell but what if
you want to add a more complex attribute , say a class (strictly speaking an object of a
given class). In this case the solution is simple. First define a class then create object of
this class and attach it to the cell. However there is on IMPORTANT detail here - your
class HAS TO inherit from object which meant it has to be “new style” python class.
Let’s see an example:

class CustomClass(object): # notice that we inherit from object

 def __init__(self, _x,y):

 self.x=_x

 self.y=_y

 def calculate(self):

 print “this is a result of calculations: ”,x*y

 return x*y

class ModifyDictAttribute(SteppableBasePy):

 def __init__(self,_simulator,_frequency=1):

 SteppableBasePy.__init__(self, _simulator ,_frequency)

 def start(self):

 for cell in self.cellList:

 print " MODIFY ATTRIB CELL ID=",cell.id

 dictionary=CompuCell.getPyAttrib(cell)

 dictionary["customClass"]=CustomClass(cell.id,cell.id+1)

-16-

 def step(self,mcs):

 for cell in self.cellList:

 if not mcs % 20:

 dictionary=CompuCell.getPyAttrib(cell)

 print "CustomClass \
calculations=",dictionary["customClass"].calculate()

If you do not inherit from object and try to use user defined class as an attribute you will
get segfault whenever cell is destroyed. The take home message here is that whenever
using classes as cell attributes always inherit from object to avoid run time errors

Important: CurrentCC3D implementation allows users to attach list or dictionary to a
cell but not both in the way presented above. However, as we already mentioned, you
may always insert a list into a dictionary or insert dictionary to a list so in practice this
easy work-around allows you to actually have both list and dictionary remembering that
you need to one extra step to make things work.

Modifying attributes of CellG object

So far, the only attributes of a cell we have been modifying were those that we attached
during runtime in the form of list or dictionary. However, CC3D allows users to modify
core cell attributes i.e. those which are visible to the C++ portion of the CC3Dcode.
Those attributes are members of CellG object (see Potts3D/Cell.h in the CC3D source
code) define properties of a CC3D cell. The full list of the attributes is shown in
Appendix B. Here we will show a simple example how to modify some of those
attributes using Python and thus alter the course of the simulation. As a matter of fact, the
way to build “dynamic” simulation where cellular properties change in response to
simulation events is to write a Python function/class which alters CellG object variables
as simulation runs.

CAUTION: while you can freely modify any attribute of the CellG object we have to
warn you that modifying some of the attributes may corrupt the simulation or even crash
CC3D. We are working on fixing this issue. For now, before trying to modify any CellG
object properties, please see manual to check if you are allowed to do so.

The steppable below shows how to change targetVolume and lambdaVolume of a cell
and how to implement cell differentiation (changing cell type):

class TypeSwitcherAndVolumeParamSteppable(SteppableBasePy):

 def __init__(self,_simulator,_frequency=100):

-17-

 SteppableBasePy.__init__(self,_simulator,_frequency)

 def start(self):

 for cell in self.cellList:

 if cell.type==1:

 cell.targetVolume=25

 cell.lambdaVolume=2.0

 elif (cell.type==2):

 cell.targetVolume=50

 cell.lambdaVolume=2.0

 def step(self,mcs):

 for cell in self.cellList:

 if cell.type==1:

 cell.type=2

 elif (cell.type==2):

 cell.type=1

As you can see in the step function we check if cell is of type 1. If it is we change it to
type 2 and do analogous check/switch for cell of type 2. In the start function we initialize
target volume of type 1 cells to 25 and type 2 cells will get target volume 50. The only
other thing we need to remember is to change definition of Volume plugin in the XML
from:

<Plugin Name="Volume">

 <TargetVolume>25</TargetVolume>

 <LambdaVolume>2.0</LambdaVolume>

 </Plugin>

-18-

to

<Plugin Name="VolumeLocalFlex"/>

to tell CC3D that volume constraint energy term will be calculated using local values (i.e.
those stored in CellG object – exactly the ones we have modified using Python) rather
than glogal settings.

To register TypeSwitcherAndVolumeParamSteppable in the main Python stript we use
the following code:
from cellsort_2D_steppables_extra_attrib import
TypeSwitcherAndVolumeParamSteppable
ts=TypeSwitcherAndVolumeParamSteppable(sim,100)
steppableRegistry.registerSteppable(ts)

Iterating over cell neighbors
We have already learned how to iterate over cells in the simulation. Quite often in the
multi-cell simulations there is a need to visit neighbors of a single cell. By neighbor we
mean adjacent cell which has common surface area with the cell in mind. As you will see
iteratin g over cell neighbors is as easy as visiting all the cells in the simulation. To
enable neighbor tracking you have to include NejghborTracker plugin in the XML or in
Python code which replaces XML. For details see
examples_PythonTutorial\cellsort_2D_neighbor_tracker example.The actual class where
we implement algorithm to visig cell neighbors is shown below:
class NeighborTrackerPrinterSteppable(SteppableBasePy):
 def __init__(self,_simulator,_frequency=100):
 SteppableBasePy.__init__(self,_simulator,_frequency)

 def step(self,mcs):
 self.cellList=CellList(self.inventory)
 for cell in self.cellList:
 cellNeighborList=self.getCellNeighbors(cell)
 print "*********NEIGHBORS OF CELL WITH ID ",cell.id,
 for neighborSurfaceData in cellNeighborList:
 if neighborSurfaceData.neighborAddress:
 print \
 "neighbor.id",neighborSurfaceData.neighborAddress.id,\
 " commonSurfaceArea=",neighborSurfaceData.commonSurfaceArea
 else:
 print \
 "Medium commonSurfaceArea=",neighborSurfaceData.commonSurfaceArea

In the outer for loop we iterate over all cells. For each cell in the simulation we construct
a list of its neighbors using
cellNeighborList=self.getCellNeighbors(cell)

As you should know by now, the getCellNeighbors funcrtion is defined inside
SteppableBasePy class and is available inside our steppable by means of inheritance.

-19-

cellNeighborList is a collection of neighborSurfaceData structures which store
information about memory address of CellG object
(neighborSurfaceData.neighborAddress) which is a neighbor of a given cell and
common surface area between cell and the neighbor
(neighborSurfaceData.commonSurfaceArea). Notice that we use mysteriously looking
statement:
if neighborSurfaceData.neighborAddress:
 …
else:
 …

We do this to check if neighbor address has a non-zero value. If neighborAddress is zero
it means that our neighbor is a medium cell which in CC3D is implemented as a NULL
pointer and as such medium does not have any properties (id, type etc). Thus trying to
refer to e.g. id pf a medium would crash the simulation. Therefore a solution is to check if
we have non medium cell and in this case we are free to access its id, type etc.. and in the
case of Medium cell we only print a common surface area between cell and its neighbor
(Medium).

Accesing concentration fields managed of PDE solvers

In this example we will show you how you may extract and modify values of the
concentration field which come from CC3D PDE solvers. We will use diffusion_2D.xml
which is a simple simulation where you only solve diffusion equation. To make thing
simple we will not use any cells and we will wsolve diffusion equation for one field -
FGF. The actual code for this simulation is show in examples_PythonTutorial\diffusion.

The code of the steppable is shown below:

class ConcentrationFieldDumperSteppable(SteppableBasePy):

 def __init__(self,_simulator,_frequency=1):

 SteppableBasePy.__init__(self,_simulator,_frequency)

 def step(self,mcs):

 fileName="FGF_"+str(mcs)+".dat"

 field=CompuCell.getConcentrationField(self.simulator,"FGF")

 pt=CompuCell.Point3D()

 if field:

 try:

 import CompuCellSetup

-20-

 fileHandle,fullFileName=CompuCellSetup.\
 openFileInSimulationOutputDirectory(fileName,"w")

 except IOError:

 print "Could not open file ", fileName

 for i in xrange(self.dim.x):

 for j in xrange(self.dim.y):

 for k in xrange(self.dim.z):

 pt.x=i

 pt.y=j

 pt.z=k

 fileHandle.\
 write("%d\t%d\t%d\t%f\n"%\
 (pt.x,pt.y,pt.z,field.get(pt)))

 fileHandle.close()

.
The highlights of the steppable are:

1) self.dim variable is a part of SteppableBasePy and it contains information
about lattice dimensions.

2) When opening a file for writing it is best to use
CompuCellSetup.openFileInSimulationOutputDirectory convenience
function. It will create new file in the output directory or, if you are not saving
screenshots (see Configuration options in the Player) it will use user specified
path (relative to CC3D installation directory) to create new file. You may also
specify absolute path in thich case it will create new file according to your
absolute path.

3) We access the field from CC3D PDe solvers using
CompuCell.getConcentrationField(self.simulator,"FGF")
Here we accessed field called FGF which matches tha name defined in the XML.

4) To access value of the field at the specified location we use:

As you can see we specify the location using pt=CompuCell.Point3D().pt has
3 components x,y,z and they denote lattice coordinates. We use
CompuCell.Point3D() to access or modify most of CC3D fields (cell field,
Concentration fields from PDE solvers etc…).

5) We use familiar syntax to write to the file. We close the file after we are done
with writing fileHandle.close().

6) To modify value of the PDE solver field we use the following examplesyntax:
field.set(pt,1200) .

-21-

Here we have stored concentration of 1200 inside at the location specified by pt.

Adding and managing extra fields for visualization purposes
Quite often in your simulation you will want to label cells using scalar field or vector
fields. In other words you will want to create fields which are fully managed by you from
the Python level. CC3D allows you to create four kinds of fields:

1) Scalar Field – to display scalar quantities associated with single pixels
2) Cell Level Scalar Field – to display scalar quantities associated with cells
3) Vector Field - to display vector quantities associated with single pixels
4) Cell Level Vector Field - to display vector quantities associated with cells

It is best to learn how to use those four kinds of fields by studying simple example in
examples_PythonTutorial\ExtraFields. In the main script we tell CC3D to create Python-
accessible additional fields:
import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup
sim,simthread = CompuCellSetup.getCoreSimulationObjects()

import CompuCell #notice importing CompuCell to main script has to be
done after call to getCoreSimulationObjects()

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Create extra player fields
dim=sim.getPotts().getCellFieldG().getDim()
extraPlayerField=simthread.createFloatFieldPy(dim,"ExtraField")
idField=simthread.createScalarFieldCellLevelPy("IdField")

vectorField=simthread.createVectorFieldPy(dim,"VectorField")

vectorCellLevelField=simthread.createVectorFieldCellLevelPy("VectorFiel
dCellLevel")
… # steppables registration and main loop call

It is quite important to put field registration in the appropriate place in the code – right
after the line.
CompuCellSetup.initializeSimulationObjects(sim,simthread)

-22-

If you forget where to put the registration of the fields Twedit++ will autogenerate
template script for you with extra field registration in the correct places.

The reminder of the main scrip looks as below:

#Add Python steppables here
from PySteppablesExamples import SteppableRegistry
steppableRegistry=SteppableRegistry()

from ExtraFields_steppables import ExtraFieldVisualizationSteppable
extraFieldVisualizationSteppable=ExtraFieldVisualizationSteppable(_simu
lator=sim,_frequency=10)
extraFieldVisualizationSteppable.setScalarField(extraPlayerField)
steppableRegistry.registerSteppable(extraFieldVisualizationSteppable)

from ExtraFields_steppables import IdFieldVisualizationSteppable
idFieldVisualizationSteppable=IdFieldVisualizationSteppable(_simulator=
sim,_frequency=10)
idFieldVisualizationSteppable.setScalarField(idField)
steppableRegistry.registerSteppable(idFieldVisualizationSteppable)

from ExtraFields_steppables import VectorFieldVisualizationSteppable
vectorFieldVisualizationSteppable=VectorFieldVisualizationSteppable(_si
mulator=sim,_frequency=10)
vectorFieldVisualizationSteppable.setVectorField(vectorField)
steppableRegistry.registerSteppable(vectorFieldVisualizationSteppable)

from ExtraFields_steppables import
VectorFieldCellLevelVisualizationSteppable
vectorFieldCellLevelVisualizationSteppable=VectorFieldCellLevelVisualiz
ationSteppable(_simulator=sim,_frequency=10)
vectorFieldCellLevelVisualizationSteppable.setVectorField(vectorCellLev
elField)
steppableRegistry.registerSteppable(vectorFieldCellLevelVisualizationSt
eppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

We simply create 4 simple steppables each of which will manipulate different kind of
field.
To see how to manipulate extra fields let’s let’s see how steppables look like. First we
import all functions from PLayerPython module.this module contains the functions
necessary to manipulate extra fields.

from PlayerPython import *
from math import *

Our first steppable will manipulate pixel based scalar field:

class ExtraFieldVisualizationSteppable(SteppableBasePy):
 def __init__(self,_simulator,_frequency=10):

-23-

 SteppableBasePy.__init__(self,_simulator,_frequency)

 def setScalarField(self,_field):
 self.scalarField=_field

 def start(self):pass

 def step(self,mcs):
 clearScalarField(self.dim,self.scalarField)
 for x in xrange(self.dim.x):
 for y in xrange(self.dim.y):
 for z in xrange(self.dim.z):
 if (not mcs%20):
 value=x*y
 fillScalarValue(self.scalarField,x,y,z,value)
 else:
 value=sin(x*y)
 fillScalarValue(self.scalarField,x,y,z,value)

As you can see here to assign a value to a pixel we use fillScalarValue function with
the following arguments (listed in the correct order):

1) reference to the field (self.scalarField) – as refurned by
simthread.createFloatFieldPy function in the main script. This function is
passed to our steppable using setScalarField function.

2) x,y,z coordinates of the pixel at which we want to change the value of the field
3) value of the field at pixel x,y,z .

Notice also that before entering triple loop we have called function clearScalarField .
This is technically not necessary but is recommended if you want to avoid leftovers from
previous field assignments.

Our next steppable shows how to deal with a cell level based scalar field:

class IdFieldVisualizationSteppable(SteppableBasePy):
 def __init__(self,_simulator,_frequency=10):
 SteppableBasePy.__init__(self,_simulator,_frequency)

 def setScalarField(self,_field):
 self.scalarField=_field

 def step(self,mcs):
 clearScalarValueCellLevel(self.scalarField)
 from random import random
 for cell in self.cellList:

 fillScalarValueCellLevel\
 (self.scalarField,cell,cell.id*random())

This is quite similar to previous steppable – except this time you are not manipulating
pixel-based scalar field but rather assign scalar to the field and associate this scalar with
particular cell. To do that we use fillScalarValueCellLevel function this takes the
following arguments:

-24-

1) Reference to the field (self.scalarField) - as refurned by
simthread.createScalarFieldCellLevelPy function

2) Reference to cell (cell)
3) A value you want to associate with cell (cell.id*random()) .

Notice that we also called clearScalarValueCellLevel function to previous values
from the field.

Once we know how to manipulate scalar fields we pretty much can figure out how to deal
with vector fields. Let’s see how we manipulate pixel based vector field:

class VectorFieldVisualizationSteppable(SteppableBasePy):
 def __init__(self,_simulator,_frequency=10):
 SteppableBasePy.__init__(self,_simulator,_frequency)

 def setVectorField(self,_field):
 self.vectorField=_field

 def step(self,mcs):
 maxLength=0
 clearVectorField(self.dim,self.vectorField)
 import math
 for x in xrange(0,self.dim.x,5):
 for y in xrange(0,self.dim.y,5):
 for z in xrange(self.dim.z):

 pt=CompuCell.Point3D(x,y,z)

 insertVectorIntoVectorField(\
 self.vectorField,pt.x, pt.y,pt.z, x, y, z)

To insert a vector into the field we use insertVectorIntoVectorField function with
the following arguments:

1) Reference to the field (self.vectorField) – as returned by
simthread.createVectorFieldPy call in the main script

2) Coordidates of the pixel at which the vesctor is to be inserted
3) x,y,z components of the vector

Next steppable shows how to manipulate cell-level vector field

class VectorFieldCellLevelVisualizationSteppable(SteppableBasePy):
 def __init__(self,_simulator,_frequency=10):
 SteppableBasePy.__init__(self,_simulator,_frequency)

 def setVectorField(self,_field):
 self.vectorField=_field

 def step(self,mcs):
 clearVectorCellLevelField(self.vectorField)
 for cell in self.cellList:
 if cell.type==1:

-25-

 insertVectorIntoVectorCellLevelField(\
 self.vectorField,cell, cell.id, cell.id, 0.0)

We use insertVectorIntoVectorCellLevelField function with the following
arguments:

1) reference to the field (self.vectorField) – as returned by a call to
simthread.createVectorFieldPy function.

2) Reference to a cell
3) x,y,z componenets of the vector

You should remember that all those4 kinds of field discussed here are for display
p[urposes only. They do not participate in any calculations done by C++ core code and
there is no easy way to pass values of those fields to the CC3D computational core.

Mitosis

In developmental simulations we often need to simulate cells which grow and divide. In
earlier versions of CompuCell3D we had to write quite complicated plugin to do that
which was quite cumbersome and unintuitive (see example 9). The only advantage of the
plugin was that exactly after the pixel copy which had triggered mitosis condition
CompuCell3D called cell division function immediately. This guaranteed that any cell
which was supposed divide at any instance in the simulation, actually did. However,
because state of the simulation is normally observed after completion of full a Monte
Carlo Step, and not in the middle of MCS it makes actually more sense to implement
Mitosis as a steppable. Let us examine the simplest simulation which involves mitosis.
We start with a single cell and grow it. When cell reaches critical (doubling) volume it
undergoes Mitosis. We check if the cell has reached doubling volume at the end of each
MCS. The folder containing this simulation is
examples_PythonTutorial/steppableBasedMitosis

Let’s see how we implement mitosis steppable:

import CompuCell
import sys
from random import uniform
import math

class MitosisSteppable(MitosisSteppableBase):
 def __init__(self,_simulator,_frequency=1):
 MitosisSteppableBase.__init__(self,_simulator, _frequency)

 def step(self,mcs):
 cells_to_divide=[]
 for cell in self.cellList:
 if cell.volume>50:

 cells_to_divide.append(cell)

-26-

 for cell in cells_to_divide:
 # to change mitosis mode uncomment proper line below
 self.divideCellRandomOrientation(cell)
 # these are valid option

 # self.divideCellOrientationVectorBased(cell,1,0,0)
 # self.divideCellAlongMajorAxis(cell)
 # self.divideCellAlongMinorAxis(cell)

 def updateAttributes(self):
 parentCell=self.mitosisSteppable.parentCell
 childCell=self.mitosisSteppable.childCell

 parentCell.targetVolume=25
 childCell.targetVolume=parentCell.targetVolume
 childCell.lambdaVolume=parentCell.lambdaVolume
 if parentCell.type==1:
 childCell.type=2
 else:
 childCell.type=1

The step function is quite simple – we iterate over all cells in the simulation and check if
the volum of the cell is greater than 50. If it is we append this cell to the list of cells that
will undergo mitosis. The actual mitosis happens in the second loop of the step function.
We have a choice there to divide cells along randomly oriented plane (line in 2D), along
major, minor or user specified axis. When using user specified axis you specify vector
which is perpendicular to the plane (axis in 2D) along which you want to divide the cell.
This vector does not have to be normalized but it has to have length different than 0.
The updateAttributes function is called automatically each time you call any of the
functions which divide cells.

Important: the name of the function where we update attributes after mitosis has to be
exactly updateAtttributes. If it is called differently CC3D will not call it automatically.
We can of course call such function by hand, immediately we do the mitosis but this is
not very elegant solution.

The updateAttributes of the function is actually the heart of the mitosis module and
you implement parameter adjustments for parent and child cells inside this function. It is
ini general a good practice to make sure that you update attributes of both parent and
child cells.Notice that we reset target volume of parent to 25:
 parentCell.targetVolume=25

Had we forgotten to do that parent cell would keep high target volume from before the
mitosis and its actual volume would be, roughly 25 pixels. As a result, after the mitosis,
the parent cell would “explode” to get its volume close to the target target volume.as a
matter of fast if we keep increasing targetvolume and not resetting it the target volume of
parent cell would be higher for each consecutive mitosis event. Therefore you sohu8ld
always make sure that attributes of parent and child cells are adjusted properly in the
updateAttribute function.

-27-

Remark: It is important to divide cells outside the loop where we iterate over entire cell
inventory. If we keep dividing cells in the this loop we are adding elements to the list
over which we iterate over and this might have unwanted side effects. The solution is to
use use list of cells to divide as we did in the example.

If you study the full example you will notice second steppable that we use to tom
implement cell growth. Here is this steppable:

class VolumeParamSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)
 def start(self):
 for cell in self.cellList:
 cell.targetVolume=25
 cell.lambdaVolume=2.0
 def step(self,mcs):
 for cell in self.cellList:
 cell.targetVolume+=1

Again, this is quite simple module whre in start function we assign targetVolume and
lambdaVolume to every cell. In the step function we iterate over all cells in the
simulation and increase target volume by 1 unit. As you may suspect to get it to work we
have to make sure that we use VolumeLocalFlex plugin instead of “regular” Volume
plugin with global parameters.

At this point you have enough tools in your arsenal to start building complex simulations
using CC3D. For example, combining steppable developed so far you can write a
steppable where cell growth is dependent on the value of e.g. FGF concentratoiin at the
centroid of the cell. To get x coordinate of a centroid of a cell use the following syntax:
cell.xCOM

or in earlier versions of CC3D
cell.xCM/float(cell.volume)

Analogously proceed for remaining components of the centroid. Additionally , make sure
you include CenterOfMass plugin in the XML or the above calls will return 0’s.

Directionality of mitosis - a source of possible simulation bias

When mitosis module divides cells (and, for simplicity, let’s assume that division
happens along vertical line) then the parent cell will always remain on the same side of
the line i.e. if you run have a “stem” cell that keeps dividing all of it’s offsprings will be
created on the same side of dividing line. What you may observe then that if you reassign
cell type of child cell after mitosis than in certain simulations cell will appear to be biased
to move in one direction of the lattice. To avoid this bias, in the updateAttributes
function, you may randomly “swap” child cell with parent cell. To be precise you should
not simply swap references to cells but rather swap cell types as well as swap attributes:
 def updateAttributes(self):

-28-

 parentCell=self.mitosisSteppable.parentCell
 childCell=self.mitosisSteppable.childCell

 tempType=parentCell.type
 parentCell.type=childCell.type
 childCell.type=tempType
 # reassign parameters for child and parent

Dividing Clusters (aka compartmental cells)
So far we have shown examples of how to deal with cells which consisted of only simple
compartments. CC3D allows to use compartmental models where a single cell is actually
a cluster of compartments. A cluster is a collection of cells with same clusterId . If you
use “simple” cells then you can check that each such cell has distinct id and clusterId.
An example of compartmental simulation can be found in
examples_PythonTutorial\clusterMitosis. The actual algorithm used to divide clusters of
cells is described in the appendix of the CompuCell3D manual.
Let’s look at how we can divide “compact” clusters and by compact, we mean “blob
shaped” clusters:

class MitosisSteppableClusters(MitosisSteppableClustersBase):
 def __init__(self,_simulator,_frequency=1):
 MitosisSteppableClustersBase.__init__(self,_simulator,
_frequency)

 def step(self,mcs):

 for cell in self.cellList:
 clusterCellList=self.getClusterCells(cell.clusterId)
 for cellLocal in clusterCellList:

 mitosisClusterIdList=[]
 for compartmentList in self.clusterList:
 clusterId=0
 clusterVolume=0
 for cell in CompartmentList(compartmentList):
 clusterVolume+=cell.volume
 clusterId=cell.clusterId

 if clusterVolume>250:
 mitosisClusterIdList.append(clusterId)
 for clusterId in mitosisClusterIdList:
 # to change mitosis mode uncomment one of the lines below
 self.divideClusterRandomOrientation(clusterId)
 # self.divideClusterOrientationVectorBased(clusterId,1,0,0)
 # self.divideClusterAlongMajorAxis(clusterId)
 # self.divideClusterAlongMinorAxis(clusterId)

 def updateAttributes(self):

-29-

 parentCell=self.mitosisSteppable.parentCell
 childCell=self.mitosisSteppable.childCell

 compartmentListChild\
 =self.inventory.getClusterCells(childCell.clusterId)
 compartmentListParent\
 =self.inventory.getClusterCells(parentCell.clusterId)

 for i in xrange(compartmentListChild.size()):
 compartmentListParent[i].targetVolume/=2.0

 compartmentListChild[i].targetVolume\
 =compartmentListParent[i].targetVolume
 compartmentListChild[i].lambdaVolume\
 =compartmentListParent[i].lambdaVolume

The steppable is quite simulat to the mitosis steppable which works for non-
compartmental cell. This time however, after mitosis happens you have to reassign
properties of children compartments and of parent compartments which usually means
iterating over list of compartments. Conveniently this iteration is quite simple due to
functionality built into CellInventory (self.inventory):
 compartmentListChild\
 =self.inventory.getClusterCells(childCell.clusterId)

The call above returns a list of cells in a cluster with clusterID specified by
childCell.clusterId. In the subsequent for loop we iterate over list of cells in the
parent and child clusters and assign appropriate values of volume constrain parameters.
Notice that because compartmentListChild is indexable (ie. we can access directly any
element of the list provided our index is not out of bounds) we can in a single loop visit
compartments of paraent and child clusters:
 for i in xrange(compartmentListChild.size()):
 compartmentListParent[i].targetVolume/=2.0

 compartmentListChild[i].targetVolume\
 =compartmentListParent[i].targetVolume
 compartmentListChild[i].lambdaVolume\
 =compartmentListParent[i].lambdaVolume

Notice that no where in the update attribute finction we have modified cell types. This is
because, by default, cluster mitosis module assigns cell types to all the cells of child
cluster and it does it in such a way so that child cell looks like a quasi-clone of parent
cell.

Implementing Energy Functions in Python
CompuCell3D allows users to develop energy functions and lattice monitors in Python.
However, we, recommend that if you do need to write such module, you do it in C++.
With parallel version of CC3D it makes little sense to build Python modules which are
called serially. Even if we could call them in a truly parallel fashion they still would be a
big performance bottleneck. For completeness we provide brief description of how to do

-30-

it. Feel free to skip this section though. In practice modules presented here are almost
never used.

First let's take a look how to develop an energy function that calculates a change in
volume energy. We will use example from
examples_PythonTutorial\cellsort_2D_with_py_plugin. In the XML file we make sure
that instead of calling Volume energy plugin we call

<Plugin Name="VolumeTracker"/>

VolumeTracker module tracks changes in cells’ volume but does not calculate any
energy.The implementation of energy function will we done in Python:

from PyPlugins import *

class VolumeEnergyFunctionPlugin(EnergyFunctionPy):

 def __init__(self,_energyWrapper):

 EnergyFunctionPy.__init__(self)

 self.energyWrapper=_energyWrapper

 self.vt=0.0

 self.lambda_v=0.0

 def setParams(self,_lambda,_targetVolume):

 self.lambda_v=_lambda;

 self.vt=_targetVolume

 def changeEnergy(self):

 energy=0

 newCell=self.energyWrapper.getNewCell()

 oldCell=self.energyWrapper.getOldCell()

 if(newCell):

-31-

 energy+=self.lambda_v*(1+2*(newCell.volume-self.vt))

 if(oldCell):

 energy+=self.lambda_v*(1-2*(oldCell.volume-self.vt))

 return energy

The most important here is changeEnergy function. This is where the calculation takes
place. Of course when we create the plugin object in the main Python script we will need
to make a call to setParams function because, that is how we set parameters for this
plugin. The changeEnergy function calculates the difference in the volume energy for
oldCell and newCell. The volume energy is given by the formula:

2
argvolume volume cell t etE = λ (V V)

Consequently the change in the volume energy for newCell (the one whose volume will
increase due to pixel-copy) is:

2 2
arg arg arg1 1 2()newCell newCell t et newCell t et newCell t etE = λ(V V) λ(V V) λ(V V)       

for the old cell (the one whose volume will decrease after pixel-copy) the corresponding
formula is:

2 2
arg arg arg1 1 2()oldCell oldCell t et oldCell t et oldCell t etE = λ(V V) λ(V V) λ(V V)       

And overall change of energy is:

oldCell newCellE E E    

So as you can see this changeEnergy function just implements the formulas that we have
just described. notice that sometimes oldCell or newCell might be a medium cells so
that's why we are doing checks for cell being non-null to avoid segmentation faults.:

 newCell=self.energyWrapper.getNewCell()

 oldCell=self.energyWrapper.getOldCell()

 if(newCell):

Notice also that references to newCell and oldCell are accessible through
energyWrapper object. This is a C++ object that stores pointers to oldCell and newCell
every pixel-copy attempt. It also stores Point3D object that contains coordinates of the
lattice location at which a given pixel-copy attempt takes place.

Now if you look into cellsort_2D_with_py_plugin.py you will see how we use Python
plugins in the simulation:

-32-

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

import CompuCell #notice importing CompuCell to main script has to be
done after call to getCoreSimulationObjects()

#Create extra player fields here or add attributes or plugins
energyFunctionRegistry=CompuCellSetup.getEnergyFunctionRegistry(sim)

from cellsort_2D_plugins_with_py_plugin import
VolumeEnergyFunctionPlugin
volumeEnergy=VolumeEnergyFunctionPlugin(energyFunctionRegistry)
volumeEnergy.setParams(2.0,25.0)

energyFunctionRegistry.registerPyEnergyFunction(volumeEnergy)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

After a call to getCoreSimulationObjects() we create special object called
energyFunctionRegistry that is responsible for calling Python plugins that calculate energy
every spin flip attempt. Then we create volume energy plugin that we have just
developed and initialize its parameters. Subsequently we register the plugin with
EenergyFunctionRegistry:

energyFunctionRegistry.registerPyEnergyFunction(volumeEnergy)

Let's run our simulation now. As you may have noticed the use of this simple plugin
slowed down CompuCell3D more than 10 times. So clearly energy functions is not what
you should be implementing in Python too often.

Changing cluster id of a cell.

Quite often when working with mitosis you may want to reassign cell's cluster id i.e. to
make a given cell belong to a different cluster than it currently does. You might think that
statement like:

cell.clusterId=550

is a good way of accomplishing it. This could have worked with CC3D versions prior to
3.4.2 However, this is not the case anymore and in fact this is an easy recipe for hard to
find bugs that will crash your simulation with very enigmatic messages. So what is wrong

-33-

here? First of all you need to realize that all the cells (strictly speaking pointers to CellG
objects) in the CompuCell3D are stored in a sorted container called inventory. The
ordering of the cells in the inventory is based on cluster id and cell id. Thus when a cell is
created it is inserted to inventory and positioned according to cluyster id and cell id.
When you iterate inventory cells with lowest cluster id will be listed first . Within cells of
the same cluster id cells with lowest cell id will be listed first. In any case if the cell is in
the inventory and you do brute force cluster id reassignment the position of the cell in the
inventory will not be changed. Why should it be? However when this cell is deleted
CompuCell3D will first try to remove the cell from inventory based on cell id and cluster
id and it will not find the cell because you have altered cluster id so it will ignore the
request however it will delete underlying cell object so the net outcome is that you will
end up with an entry in the inventory which has pointer to a cell that has been deleted.
Next time you iterate through inventory and try go perform any operation on the cell the
CC3D will crash because it will try to perform something with a cell that has been
deleted. To avoid such situations always use the following construct to change clusterId
of the cell:

reassignIdFlag=self.inventory.reassignClusterId(cell,550)

We will introduce Better error checking in the next releases of CC3D to make sure that
errors like this one is clearly communicated to the user when it occurs.

-34-

Appendix A
In this appendix we present members of the SteppableBasePy class from which all
steppables should inherit:

 self.simulator - reference to C++ simulator object
 self.potts - reference to C++ simulator object
 self.dim - x,y,z, dimensions of the lattice
 self.inventory - C++ object - inventory of CC3D cells
 self.clusterInventory - - C++ object - inventory of clusters

 self.cellList - Python-iterable list of cells
 self.cellListByType - Python-iterable list of cells of a given type.
self. cellListByType(2) returns list of all the cells of type 2

 self.clusterList- - Python-iterable list of clusters
 All CC3D plugins exposed to Python AND registered in XML or Python are
automatically being passed to SteppableBasePy at the beginning of the simulation.
 self.volumeTrackerPlugin - a reference to C++ VolumeTrackerPlugin object. None
if plugin not used

 self.neighborTrackerPlugin - a reference to C++ NeighborTrackerPlugin object.
None if plugin not used

 self.focalPointPlasticityPlugin - a reference to C++ FocalPointPlasticityPlugin
object. None if plugin not used

 self.chemotaxisPlugin - a reference to C++ ChemotaxisPlugin object. None if plugin
not used
 self.boundaryPixelTrackerPlugin - a reference to C++ BoundaryPixelTrackerPlugin
object. None if plugin not used
 self.pixelTrackerPlugin - a reference to C++ PixelTrackerPlugin object. None if
plugin not used

 self.elasticityTrackerPlugin - a reference to C++ ElasticityTrackerPlugin object.
None if plugin not used
 self.plasticityTrackerPlugin - a reference to C++ PlasticityTrackerPlugin object.
None if plugin not used
 self.connectivityLocalFlexPlugin - a reference to C++ ConnectivityLocalFlexPlugin
object. None if plugin not used
 self.lengthConstraintLocalFlexPlugin - a reference to C++
LengthConstraintLocalFlexPlugin object. None if plugin not used
 self.contactLocalFlexPlugin - a reference to C++ ContactLocalFlexPlugin object.
None if plugin not used

-35-

 self.contactLocalProductPlugin - a reference to C++ ContactLocalProductPlugin
object. None if plugin not used
 self.contactMultiCadPlugin - a reference to C++ ContactMultiCadPlugin object.
None if plugin not used
 self.adhesionFlexPlugin - a reference to C++ AdhesionFlexPlugin object. None if
plugin not used
 self.cellOrientationPlugin - a reference to C++ CellOrientationPlugin object. None if
plugin not used
 self.polarizationVectorPlugin - a reference to C++ PolarizationVectorPlugin object.
None if plugin not used
 self.momentOfInertiaPlugin - a reference to C++ MomentOfInertiaPlugin object.
None if plugin not used
 self.secretionPlugin - a reference to C++ SecretionPlugin object. None if plugin not
used

 All the functions will return None if for any reason object requested cannot be
found. Please check if returned object is different than None object before using the
object in your simulation to avoid simulation crash.

 self.getClusterCells(_clusterId) - function returning Python iterable list of cells in
the cluster with cluster id = _clusterId.

 self.getCellNeighbors(_cell) - function returning Python-iterable list of neighbors of
cell = _cell

 self.getFocalPointPlasticityDataList(_cell) - function returning Python-iterable list
of FocalPointPlasticityData of cell=_cell. For details of FocalPointPlasticityData see
CC3D manual.

 self.getInternalFocalPointPlasticityDataList(_cell) - function returning Python-
iterable list of InternalFocalPointPlasticityData of cell=_cell. For details of
InternalFocalPointPlasticityData see CC3D manual.

 self.getCellBoundaryPixelList(_cell) - function returning Python-iterable list of
pixels belonging to the boundary of cell = _cell

 self.getCellPixelList(_cell) - function returning Python-iterable list of pixels of cell
= _cell

 self.getElasticityDataList(_cell) - function returning Python-iterable list of
ElasticityData of cell=_cell. For details of ElasticityData see CC3D manual.

 self.getPlasticityDataList(_cell) - function returning Python-iterable list of
PlasticityData of cell=_cell. For details of PlasticityData see CC3D manual.

-36-

 self.getFieldSecretor(_fieldName) - returns Secretor object used to secrete chemicals
into the field with name = _fieldName. For details see CC3D manual

 self.cleanDeadCells() - function which has to be called from Python if you decide to
remove a cell directly (i.e. by manually overwriting cell's pixel with pixels of ther cells
including Medium) from Python.

 self.deleteCell(_cell) - function deleting cell = _cell by overwriting cell pixel with
Medium pixel. You have to call self.cleanDeadCells() after you delete cell.

 self.createNewCell(_type,_pt,_xSize,_ySize,_zSize=1) - a function creating a
cuboidal (rectangular in 2D) cell ot type=type at the location specified by lattice point _pt
and of sizes specified by _xSize,_ySize, _zSize. _zSize is by default 1.

 self.moveCell(_cell, _shiftVector) - function shifting cell = _cell by a vector =
_shiftVector.

 self.checkIfInTheLattice(_pt) chcecks if a point _pt is in the lattice

 In typical application users inherit SteppableBasePy to import all the functionality
available in SteppableBasePy.
 Notice that MitosisSteppableBase and ClusterMitosisBase all inherit
SteppableBasePy.

